Index

Page references followed by b denote boxes; those followed by f denote figures; those followed by t denote tables.

A

Abbeel, Pieter, 80
ABI BioScope, 182
ABNER, 291t
Abstraction, 7, 11
ABySS, 171, 171t
Accuracy, 27, 54-55, 55f
Accurate mass and time tag (AMT) approach, 193-194
Actin cytoskeleton pathway, regulation of, 235
Active contour algorithm, 97-98, 98f
Additive color mixing, 85
Affymetrix, 112, 113, 180
Agglomerative clustering, 77
Agilent, 110-113, 180, 181
AILUN, 265
Akt, 242f, 243-244
Algorithm(s)
active contour, $97-98,98 \mathrm{f}$
CHIP-seq, 173-177
Cocke-Kasami-Younger (CKY), 290
computational image analysis, 101-103
conditioned random fields, 298, 298t
constant-time, 12-13
cubic, 13
described, 11-12
Earley, 290
ease of implementation, 15
expectation-maximization (EM), 119, 212, 214
experimental time, 13
feature selection, 65-66
greedy, 72
image registration, 101-103
feature-based algorithm, 102-103
intensity-based registration, 101-102
mutual information theoretic technique, 102
k-nearest neighbors, 67-68, 298t
level set, 98-99, 99f-100f
linear time, 13
machine learning, 62-78
classification task, 49, 52f
classifier, 49-50
clustering, 51, 52 f
data, 62-67
features selection, 52
probabilistic models, 72-76, 73f
regression task, 50, 52f, 57
semisupervised learning, 51, 52f
supervised learning, 50, 52-53, 52f, 67-72
terminology, 49-53
training phase, 50
unsupervised learning, $51,52 \mathrm{f}, 53$,
76-78, 76f
maximum entropy, 298, 298t
naive Bayes, 68-69, 298, 298t
parallelizability, 14-15
partitioning, 71-72, 118-119
performance evaluation, 53-57, 55f
quadratic, 13
random forests, 298, 298t
running time analysis, 12-13
running time of, 65
SEQUEST, 191-192, 192b
space complexity, 13-14
support vector machines (SVM), 298, 298t
Alignment
anchor, 164-165
indel, 163-164
paired-end, 164-165, 165f
partners, 164-165
programs for, 166-167, 166t
split-read, 168-169, 168f
Alleles
biallelic, 126
defined, 126
Hardy-Weinberg equilibrium, 137
major, 126
maternal, 126
minor, 126
paternal, 126

Allelic odds ratio, in GWAS, 129-130
Alternative hypothesis, 26
Alzheimer's disease, 235
AMT (accurate mass and time tag) approach, 193-194
Anchor, alignment, 164-165
Annotation
biomedical text, 292
incomplete and inaccurate annotations, 233-234, 235f
ANOVA (analysis of variance), 30
Anscombe's quartet, 41, 42f, 43
Anxiety, bioinformatics, 1
Archon X Prize for Genomics, 184
Area under the curve, 56f, 57
Arginine, heavy, 198
ArrayWxpress, 261
Association
genome-wide association study (GWAS), 125-150
genotype-phenotype, 128-130, 128f
interpreting genetic association, 144-145
Association testing, 137-141
χ^{2} test of statistical independence, 139-140
improving statistical power, 141-144
alternate tests of association, 141-142
alternate types of variation, 142
genotype imputation, 142-144, 143f
meta-analysis, 144
Assortative mating, 137
Assumptions, 26
Autosomes, 126
Auxiliary space complexity, 14

B

Bagging, 72
BAM file format, 165
BANNER, 291t
Base-calling error probability, 159
Bayesian networks, 73-74, 73f, 245-259
in action, 255-256
chain rule, 247
dynamic Bayesian networks (DBNs), 244-245
joint probability distribution, 245-248
learning signaling pathway structure from flow cytometry data, 256
Markov assumptions, 247
model properties, 251-255
causality, 254-255
dependencies and independencies in graph structure, 251-253
model semantics, 245-246
notation, 246-249
structure learning, 249-251
model averaging, 251
scoring, 249-250, 250b
searching the space of possible graph structures, 250-251

Bayes' Rule, 20-21, 249
Bayes' theorem, 68
Benjamini-Hochberg false discovery rate, 36, 121
Biallelic, 126
Bias, described, 23
Binary images, 93
Binning
1D, 209-210
2D, 210-211, 211f
Bioconductor, 113, 265, 266
Biomedical images, 87-90
computed tomography (CT), 88, 89f
magnetic resonance imaging (MRI), $89,89 \mathrm{f}$
microscope images, 87-88, 88f
positron emission tomography (PET), 90
Biomedical text, 285-301
annotation, 292
applications, 286-287
biosurveillance, 287
consumer health informatics, 287
data integration, 287
document classification, 286-287
drug discovery, 287
health services delivery, 287
clinical document classification example, 298-300, 299t-300t
goal of mining, 285-286
growth in biomedical literature, 285-301
machine learning, 297-300, 298t-300t
named entity recognition, 290-291, 291t
ontologies in biomedicine, 295-297, 296f
preprocessing raw text, 288-290, 288f-289f
chunking and parsing, 288f-289f, 289-290
part of speech tagging, 288-289, 288f
stemming, 290
stop word removal, 290
tokenization, 288, 288f
processing, 300-301
standard terminologies, 292-295, 294t-295t
BioPortal, 297
Biosurveillance, 287
Bio Tagger-GM, 291t
Bishop, Christopher M., 79
Bits in images, 86 b
BLAST, 158-159, 166t, 167
BLAT (BLAST-like alignment tool), 166t, 167
Blocks, 109
Bonferroni procedure, 35, 121, 145
Boolean feature, 64-65
Boolean networks, 242-244, 242f, 245
Boosting, 72
Bootstrapping, 38
Bowtie, 166, 166t
Box-Cox transformation, 207
Brain images, analysis of, 96-99, 97f-98f
active contour algorithm, 97-98, 98 f
k-means, 97, 97f
level set algorithm, 98-99, 99f-100f

BreakDancer, 183
Burroughs-Wheeler aligner (BWA), 166-167, 166t
Burroughs-Wheeler aligner, Smith-Waterman alignment (BWA-SW), 166t, 167
Byte, 8

C

Candidate mapping locations, 161
Canny, John F., 104b
Canny edge detection, 104b-105b
CASAVA, 182
Cases, in GWAS, 128-129
Categorical data
defined, 31
mixing categorical and continuous data, $33 \mathrm{~b}-34 \mathrm{~b}$
statistical tests of, 31-33
Causal interpretation, 254
Causality, 254-255
Cell images, 92-96, 92f-96f
k-means clustering, 95-96, 96 f
Otsu's method for image segmentation, 94-95, 94f-95f
Censored data, 41-42
Central dogma, 107, 187
Central limit theorem, 29
Central processing unit (CPU), 8, 8t
CGH (comparative genomic hybridization), 180
Chain rule, 247
Chain-termination method, 155
Channels, 84-85, 87f
Chart parsing, 290
ChIP-on-chip (chromatin immunoprecipitation on chip), 107, 172
CHIP-seq, 172-179
advantages, 178
algorithms, 173-177
filtering, 176
identification of regions of enrichment, 175-176
ranking by significance, 176-177
signal shifting, 174-175, 175f
smoothed signal creation, 173-174, 173f
artifacts, 176, 177f
overview, 172-173
practical considerations, 177-178
confidence estimate, 177
performance, 177
usability, 178
software packages, $178,179 \mathrm{f}$
χ^{2} test of statistical independence, 32, 139-140
Chromatin immunoprecipitation (ChIP), 172
Chromatin immunoprecipitation on chip (ChIP-on-chip), 107, 172
Chromosomes
autosomes, 126
sex, 126
Chunking, 288f-289f, 289-290
CIGAR, 166

CisGenome, 178, 179f
CKY (Cocke-Kasami-Younger) algorithm, 290
Classification in a 2D feature space, 69-70, 69f
Classification task, 49, 52 f
Classifier, 49-50
complexity of, 62
decision tree, 71-72, 71f
generalization, 58
linear, 70
overfitting, 62-64, 63f
performance evaluation and, 53-57, 55f
testing set, 58-61, 59f
training multiple, 72
training set, 58-61, 59f
Closed-form expression, 142
Cloud computing services, 9
Clustering, 51, 52 f
agglomerative, 77
divisive, 77
example of, 76 f
flow cytometry, 211-215
hard clusters, 119
hierarchical, 76f, 77, 116-118, 116f-117f
k-means, 77-78
brain images, $97,97 \mathrm{f}$
cell images, 95-96, 96f
flow cytometry, 212-215
semisupervised clustering, 117-120, 119f
semisupervised clustering methods, 117-120, 119f
unsupervised clustering methods, 115-117, 116f-117f
unsupervised learning algorithms, 76-78
Cluster plot, 136-137, 136 f
CMYK image, $85,87 \mathrm{f}$
CNVer, 182
CNVs (copy-number variants), 142, 180, 182
CNV-seq, 182
Cochran-Armitage trend test, 141
Cocke-Kasami-Younger (CKY) algorithm, 290
Color mixing
additive, 85
subtractive, 85
Color space, 84-85
Color space encoding, 157, 157f
Comparative genomic hybridization (CGH), 180
Comparative Toxicogenomics Database, 270
Compensation, 206-207, 206f
Complete Genomics, 183-184
Complexity penalty, 250b
Computational image analysis, 92-103
algorithms, 101-103
brain images, 96-99, 97f-98f
cell images, $92-96,92 \mathrm{f}-96 \mathrm{f}$
edge detection, 103, 104b-105b
image registration, 99-101
Computed tomography (CT), 88, 89f

Computers
hardware components of, $8,8 \mathrm{t}$
limitations of, 12
overview of, 8-9
Computer science, introduction to, 7-15
algorithms, 11-12
computers, 8-9
ease of implementation, 15
parallelizability, 14-15
programs, 9-11
running time analysis, 12-13
space complexity analysis, 13-14
Conditional independency, 246, 247, 248, 252
Conditional probability, 18, 20, 68-69
Conditional probability distribution, 74, 246-248
Conditional probability table (CPT), 248, 252
Conditioned random fields algorithm, 298, 298t
Confounding factor, 67
Connectivity graph, 258
Connectivity Map, 269, 270
Constant-time algorithm, 12-13
Constant-time storage, 14
Consumer health informatics, 287
Contigs, 169
Contingency table, 31-33, 32t-33t, 129
Continuous data
mixing categorical and continuous data, 33b-34b
statistical tests on, 28-30
Continuous feature, 65
Contrast, 91, 91f
Controls, in GWAS, 128-129
Copy-number variants (CNVs), 142, 180, 182
Correction methods
Benjamini-Hochberg false discovery rate, 36, 121
Bonferroni, 35
Tukey, 36
Correlation, 39-43
covariance, 40
definitions, 128
described, 39-40
Pearson, 40-41, 42f
Spearman rank, 41, 42f
Correlation coefficient, 101-102
Cost function, 101
Counting rules, 19
Covariance, 40
Covariate analysis, 149
Cox proportional hazard models, 42
C programming language, 11,15
C++ programming language, 9,11
CPT (conditional probability table), 248, 252
CPU (central processing unit), $8,8 \mathrm{t}$
Cross-validation, 58-61, 59f
feature selection and, 61,66
k-fold, 59f, 60
leave-one-out, 60
CT (computed tomography), 88, 89f
cTAKES, 291t

Cubic algorithm, 13
Cubic space complexity, 14
Cufflinks, 170-171, 171t
Current procedural terminology, 293
Curse of dimensionality, 206
Cyanine 3, 109-111
Cyanine 5, 109-111
Cytobank, 203, 205

D

DAGs (directed acyclic graphs), 244
Data
categorical, 31-33, 33b-34b
censored, 41
clean, 64
learning biomolecular pathways from, 241-259
missing, 41-43
mixing categorical and continuous data, 33b-34b
output variables, 66-67
probability and, 17-21
quality, 64
statistical analysis of, 25-39
tests on categorical data, 31-33
tests on continuous data, 28-30
using machine learning algorithms, 62-67
visualization, 43-44
Anscombe's plot, 41, 42f, 43
draftsman's plot, 43, 44f
Databases, 261, 270
Data integration, 287
gene expression experiments, 261-281
investigative steps, 262 f
paradigms
integrating expression data over "unrelated" contexts, 267f, 269-275, 270f
integrating expression data with other genome-wide modalities, 267f, 275-278, 276f
meta-analysis of gene expression data, 266, 267f, 268-269, 268f
programming exercise, 278-281
finding the data, 278
formulating a question, 278
integrating findings, 279
interpreting findings, 279
programming solution, 280
representation of differential gene expression, 278-279
question formulation, 262-263, 278
representation of differential gene expression data, 263-265, 264f, 278-279
Data representation, 263
Data snooping, 34-35
Data transforms, 24
DAVID, 265
DBNs (dynamic Bayesian networks), 244-245

Decision tree, 71-72, 71f
Degrees of freedom, 30
De novo assembly, 169
De novo sequencing, peptide identification and, 194-195, 195t
Descriptive statistics, 21-24
Differential equation models, 257b-258b
Differential gene expression, representation of data, 263-265, 264f, 278-279
Dimensionality, 91-92
Dimensionality reduction, 78
Directed acyclic graphs (DAGs), 244
Discrete feature, 64-65
Discrete ordered features, 64-65
Dispersion, statistics of, 22
Distributed systems, programs for, 9
Distribution
conditional probability, 74, 246-248
F, 30
hypergeometric, 31 , 32 f
joint probability, 74, 245-248
null, 121, 140
skewness of, 24, 24f
symmetry of, $24,24 \mathrm{f}$
$t, 28-30$, 28f, 30f
Divisive clustering, 77
DNA-binding proteins, 172
DNA sequencing
next-generation sequencing, 155-184
ABI SOLiD, 156t, 157, 157f
alignment, 157-158
BLAST use, 158-159
CHIP-seq, 172-179
454 FLX, 156, 156t
future of, 184
gene expression microarrays compared, 107
Illumina, 156, 156t
RNA-seq, 167-172
sequencing services, 183-184
short-read mapping, 159-167
variation detection, 180-183
1000 Genomes Project, 142
Document classification, 286-287
Draftsman's plot, 43, 44f
Drug discovery, 287
DrugNer, 291t
Dye bias, 110-111
Dynamic Bayesian networks (DBNs), 244-245
Dynamic contrast ratio, of human eye, 83
Dynamic susceptibility contrast perfusion imaging
(DSC-MRI), 89

E

Earley algorithm, 290
Edge detection
Canny, 104b-105b
described, 103

ELANDv2, 166, 166t
Electronic medical records (EMRs), 287
Electron microscope, 87-88, 88f
The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Hastie, Tibshirani, and Friedman), 79
"Else if" statement, 10
EM (expectation-maximization) algorithm, 119, 212, 214
EMBL (European Molecular Biology Library), 265
Emission probabilities, 75
Encyclopedia of DNA Elements (ENCODE), 150
Enrichment, identification of regions of, 175-176
ENTREZ, 268, 270, 276, 277
Entropy, 102
Equivalence classes, 253b
ERANGE, 170-171, 171t
ERK, 246-252, 247f, 253b-254b
Error
family-wise error rate, 35
in multiple hypothesis testing, 35
root mean square, 57
testing, 58-59, 63-64, 63f
training, 58-59, 63-64, 63f
type 1,35
type 2, 35
Estimate, biased, 23
Euclidean distance, 68, 114-115, 115f
European Molecular Biology Library (EMBL), 265
Executable, 8
Exomes, 142
Expectation, 21
Expectation-maximization (EM) algorithm, 119, 212, 214
Experimental design, 57-61
Exponential-time algorithm, 13
Expression arrays, 107-122
Expression data, 107-124
Eye, human, 83
Eye color
genetic association, 128-130, 128f
single-nucleotide polymorphisms (SNPs), 126, 127f

F

False discovery, 34
False discovery rate (FDR), 120-122
Benjamini-Hochberg, 36, 121
ChIP-seq, 177-178
expression data, 268, 273-275
False negative, 54, 55, 55f
False positive, 53, 55-56, 55f
False positive rate, 35
Family-wise error rate (FWER), 35, 120-121
.fcs files, 202-204, 202f-204f, 202t
F distribution, 30

Feature(s)
Boolean, 64-65
continuous, 65
discrete, 64-65
discrete ordered, 64-65
interactions between, 70
number of, 62,65
ordinal, 64
sample, 49-50
Feature selection, 52, 61, 65-66
Feature space, 49
classification in 2D, 69-70, 69 f
dimensional reduction and, 78
effective dimensionality of, 62
as joint probability distribution, 74
principal component analysis and, 78
Fisher, Ronald, 29
Fisher's exact test, 31-33, 141
Fisher's method, 268, 268 f
Flow cytometry, 188, 200-218
analyzing, 205-206
background of, 200-201, 201f
comparing across samples, 216-218
informative event problem, 217-218
quantitative difference problem, 217
sample classification problem, 216-217
data visualization of flow data, 203-205, 203f
exploratory analysis, 218
.fcs files, 202-204, 202f-204f, 202t
future directions, 218-219
clinical applications, 219
data variability, 218-219
structured annotation for data sharing, 219
learning signaling pathway structure from, 256
preprocessing steps, 206-208, 206f-207f
compensation, 206-207, 206f
transformation of data, 207, 207f
probability distribution, 213b-214b
states, 201
subpopulation-finding and feature extraction methods, 208-216
binning, 209-210
cluster analysis, 211-215
heatmaps, 209, 209f
histograms, 209-210, 210f
mixture models, 212-215
nonparametric population-finding methods, 215-216
1D methods, 208-210
2D methods, 210-211
Fluorescence microscope, 87-88, 88f
Fluorophores, 109-111
fMRI (functional MRI), 89
Focus, 83, 84f, 91
Fold enrichment, 176
Fork, 252
For-loops, 10
Frequentist approach, to statistical hypothesis testing, 25

Friedman, Jerome, 79
Friedman, Nir, 80
F statistic, 27
Function, 9-10
Functional class scoring approaches, 227-228
assessing statistical significance of pathways, 232
limitations, 228
overview, 227-228
tools for, 231t
Functional MRI (fMRI), 89
FWER (family-wise error rate), 35, 120-121

G

Gating, 205, 208
Gaussian smoothing, 104b
Gene Association Database (GAD), 277
GeneChip, 180
Gene expression
analysis of values, 114-122
metrics, 114-115, 115f
semisupervised clustering methods, 117-120, 119f
statistical approaches to data interpretation,

$$
120-122,121 \mathrm{t}
$$

unsupervised clustering methods, 115-117, 116f-117f
machine learning and analysis, 49-51, 52f
meta-analysis and data integration, 261-281
microarrays, 107-122
analysis of gene expression values, 114-122
one-color, 108, 112-114
overview of, 107-109
two-color, 108, 109-111, 111b, 111f
Gene Expression Omnibus (GEO), 261, 262, 264, 269, 277
Gene-level statistics, 230, 231t-232t
Gene Ontology (GO), 292-293, 294t
incomplete and inaccurate annotations, 233-234, 235f
Generalization, 58
Genes, number of human, 130
Gene set association (GSA), 271, 272-273
Gene Set Enrichment Analysis (GSEA), 269-271
Genetic association, 128-130, 128 f
interpreting, 144-145
testing, 137-141
χ^{2} test of statistical independence, 139-140
improving statistical power, 141-144
Genetic heterogeneity, 127
Genome sequencing, 142
Genome-wide association study (GWAS), 125-150
data quality, 145-146
fundamental concepts underlying, 126-130
goal of, 126
integrating expression data with, 276-277
rationale for, 130-135
development of GWAS as research tool, 131-132
linkage disequilibrium, 132-133, 134f
linkage studies different from, 133-135
what can be learned from, 130-131
significance criterion for, 145
steps in, 135-150
association testing, 137-141, 138f
causal genetic factor, 149-150
genotype calling, 135-137, 136f
improving statistical power, 141-144, 143f
interpreting genetic associations, 144-145
population stratification, 146-149, 148f
Genome-wide significance, 140-141
Genomic inflation factor, 148-149
Genomic variants, 180-183
Genotype calling, 135-137, 136f
Genotype imputation, 142-144, 143f
Genotype-phenotype association, 128-130, 128f
Genotypes
association with phenotypes (see Genome-wide association study)
described, 126, 127f
genotype-phenotype, 128-130, 128f
Genotypic odds ratio, in GWAS, 129-130
GEOquery, 266, 271-272
GO. See Gene Ontology
Golub, Todd, 51
Gosset, William S., 29
Grayscale image, 86-87, 87f
of a cell, 92-93, 92 f
Greedy random search, 250
GSA (gene set association), 271, 272-273
GSEA (Gene Set Enrichment Analysis), 269-271
GWAS. See Genome-wide association study

H

Haplotype blocks, 142
Haplotype phase inference, 142
Haplotypes, 142
НарМар, 131-132
Hard drive, 8, 8t, 14
Hardy-Weinberg equilibrium, 137
Hastie, Trevor, 79
Health services delivery, 287
Heatmaps, 209, 209f
Heavy water, 198
Heterozygous, 136
Heuristic search, 250
Hidden Markov model (HMM), 73f, 74-76, 298, 298t
Hidden variables, 254
Hierarchical clustering, 76f, 77, 116-118, 116f-117f
Histograms, flow cytometry, 209-210, 210 f
HITECH Act, 287
HomoloGene, 265
Homozygous, 136
Hoover Tower, photographs of, 83, 84f-85f, 87 f
Human Protein Reference Database, 276
Hyperbolic arcsine transform, 207, 207f
Hypergeometric distribution, 31, 32 f
Hypergeometric experiment, 31
Hypergeometric test, 271

Hypothesis
alternative, 26
null, 26, 27
testing of, 27
Hypothesis testing. See also Statistical hypothesis testing
described, 27
multiple, 140, 145
Hysteresis thresholding, 105b

I

ICAT (isotope coded affinity tags), 198
ICD-10CM (international classification of diseases), 293, 294t
ICP (iterative closest point), 102-103
Identical-read stacks, 176
"If" statement, 10
Illumina, 112-113, 133
CASAVA, 182
sequencing, $156,156 t$
Image analysis, 83-106
biomedical images, 87-90
computational, 92-103
generating images for, 90-92
imaging basics, 83-87
Image registration, 99-101
algorithms, 101-103
feature-based algorithm, 102-103
intensity-based registration, 101-102
mutual information theoretic technique, 102
multiple images, 99-100
spatial transformation, 100-101
Images
biomedical, 87-90
computed tomography (CT), 88, 89f
magnetic resonance imaging (MRI), 89, 89f
microscope images, $87-88$, 88 f
positron emission tomography (PET), 90
bits in, 86b
dynamic, 100
imaging basics, 83-87
intermodality, 99-100
intramodality, 99-100
multiple, 99-100
serial, 100
Image segmentation
defined, 93
k-means clustering, 95-96, 96f
Otsu's method for, 94-95, 94f-95f
Imputation, 43, 65, 272
Indel, 142
Indel alignment, 163-164
Independent events, 19
Indexed color, 90, 91f
Influence, 244
Informatics anxiety, 1
Input, of the classifier, 50

This is a free sample of content from A Bioinformatics Guide for Molecular Biologists.
Click here for more information or to buy the book.

Input/output (I/O) devices, 8, 8t
Intensity
computation of image intensity gradient, 104b
cutoff, 93-94, 93f
Otsu's method for image segmentation, 94-95, 94f-95f
Intensity-based registration, 101-102
Intensity plot, 136-137, 136f
Intermodality images, 99-100
International classification of diseases (ICD-10CM), 293, 294t
International HapMap Project, 131-132
International Society for Advancement of Cytometry (ISAC), 202
Interquartile range, 22, 24
Interventional data, 244, 253b-254b, 255
Intramodality images, 99-100
ISAC (International Society for Advancement of Cytometry), 202
Iterative closest point (ICP), 102-103
iTRAQ (isobaric tags for relative and absolute quantitation), 198

J

Jackknife technique, 38-39
Java programming language, 9, 11
Joint probability, 19-20
Joint probability distribution, 74, 245-248

K

KEGG (Kyoto Encyclopedia of Genes and Genomes), 226, 233, 235, 236
Kernel smoothing, 174
Kernel trick, 70
k-fold cross-validation, 59f, 60
Klein, Dan, 80
k-means
brain images, 97, 97f
cell images, 95-96, 96f
clustering, 77-78
flow cytometry, 212-215
semisupervised clustering, 117-120, 119f
k-nearest neighbors algorithm, 67-68, 298t
Knome, 183
Koller, Daphne, 80
Kolmogorov-Smirnov test, 217
Kruskal-Wallis test, 30
Kurtosis, 22
Kyoto Encyclopedia of Genes and Genomes (KEGG), 226, 233, 235, 236

L

Language processing. See Natural language processing LCT gene, 147
Leave-one-out cross-validation, 60

Level set algorithm, 98-99, 99f-100f
Libraries, 9
Life Technologies, 184
Light microscope, 87-88, 88f
Likelihood ratio test, 141
Linear classification algorithms, 69-70
Linear time algorithm, 13
Linear time storage, 14
Linear transform, 207, 207f
LingPipe, 291t
Linkage analysis, 133-135
Linkage criteria, 77
Linkage disequilibrium, 132-133, 134f
Linkage equilibrium, 133
Local maximum, 251
Location, statistics of, 22
Locus
defined, 126
linkage analysis, 133-135
Logistic regression, 70
LOINC, 293, 294t
Lowess normalization method, 110-111, 111f

M

Machine learning, 47-80
algorithm use, 62-78
data, 62-67
probabilistic models, 72-76, 73f
supervised learning algorithms, 67-72
unsupervised learning algorithm, 76-78, 76f
defined, 47
experimental design, 57-61, 59f
performance evaluation, 53-57, 55f, 56f
resources, 79-80
terminology, 49-53
MACS, 178, 179f
Magnetic resonance imaging (MRI)
brain images, $96-100,97 \mathrm{f}-98 \mathrm{f}$, 100 f
described, $89,89 \mathrm{f}$
functional, 89
perfusion, 89, 96-97
structural, 89
Manhattan distance, 67-68, 114
Manhattan plots, 146, 147f
Mann-Whitney U test, 30
MA plots, 111, 111b
Mapping
next-generation sequencing, 158-167
short-read, 159-167
alignment programs, 166-167, 166t
characteristics of short reads, 159-160, 160 f
indel alignment, 163-164
mapping output, 165-166
mapping quality/posterior probability,
162-163, 162f
paired-end alignment, 164-165, 165f
practical considerations, 166-167
quality score use in mapping, 163
repetitive reads, 161
scoring and filtering, 161-162
seeding, 160-161
Marginal likelihood, 249
Markov assumptions, 247
Mascot, 192
Mass differential equation model, 257b
Mass spectrometry (MS), 188-199
overview of, 188-189, 189f
peptide identification, 191-194
accurate mass and time tag (AMT) approach, 193-194
database-driven approaches, 191-193
de novo sequencing, 194-195, 195t
estimating false positives, 193
target-decoy approach, 193
peptide quantitation, 196-199
labeled, 197-198, 198 f
label-free, 196-197
selected reaction monitoring (SRM), 198-199, 198f
protein digestion for, 190
protein identification, 195-196
false positives, 195-196
one peptide mapped to many proteins, 196
protein quantitation, 199
sample preparation, 189-190
spectra example, 191, 191f
tandem (MS/MS), 190-191, 191f
Mass-to-charge (m / z) ratio, 190
Mating, assortative, 137
Matlab machine learning algorithms, 79
MATLAB programming language, 9,11
Maximum, 22
Maximum entropy algorithm, 298, 298t
Mean
central limit theorem and, 29
comparing means between groups, 28-30, 28 f
population, 22,23
sample, 21, 22
standard error of, 24
in unimodal, symmetric distribution, 24
Measures of central tendency, 22
Median
sample, 21, 22
in unimodal, symmetric distribution, 24
Median Polish summation, 113
Medical dictionary for regulatory activities
(MedDRA), 294t
Medical subject headings (MeSH), 293, 294t
MedLEE, 291t
Medline, 285, 286f, 288
MEK, 242f, 243, 246-252, 247f, 253b-254b
Memory
defined, $8,8 \mathrm{t}$
space complexity and, 13-14
Meta-analysis
described, 144
gene expression experiments, 261-281
for increasing statistical power, 144
MetaMap, 291t
Metathesaurus, 292-293, 294t
Metrics, microarray analysis, 114-115, 115f
Microarrays, 107-122
analysis of gene expression values, 114-122
metrics, 114-115, 115f
semisupervised clustering methods, 117-120, 119f
statistical approaches to data interpretation, 120-122, 121t
unsupervised clustering methods, 115-117, 116f-117f
blocks, 109
high-density DNA, 132
next-generation sequencing compared, 107
one-color
overview, 112
preprocessing and normalization, 112-114
two-color compared, 108
overview of, 107-109
tiling, 107
two-color
MA plots, 111, 111b
one-color compared, 108
overview, 109-110
preprocessing and normalization, 110-111, 111f
Microscope images, 87-88, 88f
Minimum, 22
Minkowski equation, 114
Mismatch probes, 112
Missing data, 41
Mixture models, flow cytometry and, 212-215
Model averaging, 251
Modeling assumptions, 242
Models
pathway
Bayesian networks, 245-259
Boolean networks, 242-244, 242f, 245
challenges in, 241
differential equation models, 257b-258b
dynamic Bayesian networks, 244-245
modeling assumptions, 242
network inference, 241
robust, 244
probabilistic, 72-76, 73f, 241-242
Bayesian network, 73f, 74-76
hidden Markov models (HMM), 73f, 74-76, 298, 298t
proportional hazard, 42
MoDIL, 183
Module networks, 255-256
Monty Hall problem, 18
Moore, Andrew, 80
Moore, Gordon, 47
Moore's law, 47-48
MOSAIK, 166t, 167
MRI. See Magnetic resonance imaging

MS. See Mass spectrometry
Multiple hypotheses, correction for, 21, 35-36, 230t-232t, 232-233
Multiple hypothesis testing, 140, 145
correction methods, 35-36
Benjamini-Hochberg false discovery rate, 36
Bonferroni, 35
Tukey, 36
errors, 35
problems with, 34-35
Multiple testing, 140, 145
Mutual information theoretic technique, 102

N

Naive Bayes algorithm, 68-69, 298, 298t
Named entity recognition (NER), 290-291, 291t
National Cancer Institute (NCI)
Enterprise Vocabulary Services, 292
Thesaurus and Metathesaurus, 292-293, 294t
National Center for Biotechnology Information (NCBI), 265
Natural language processing, 285-301
annotation, 292
applications, 286-287
machine learning, 297-300, 298t-300t
named entity recognition, 290-291, 291t
ontologies in biomedicine, 295-297, 296f
preprocessing raw text, 288-290, 288f-289f
standard terminologies, 292-295, 294t-295t
NCBI (National Center for Biotechnology Information), 265
NCI. See National Cancer Institute
Negative predictive value (NPV), $54,55 \mathrm{f}$
NER (named entity recognition), 290-291, 291t
Network device, 8, 8t
Network inference, 241
Networks
Bayesian, 73-74, 73f, 245-259
in action, 255-256
chain rule, 247
joint probability distribution, 245-248
learning signaling pathway structure from flow
cytometry data, 256
Markov assumptions, 247
model properties, 251-255
model semantics, 245-246
notation, 246-249
structure learning, 249-251
Boolean, 242-244, 242f, 245
dynamic Bayesian networks, 244-245
module, 255-256
Neurosphere cells, 116, 117f
Next-generation sequencing, 155-184
ABI SOLiD, 156t, 157, 157f
alignment, 157-158
BLAST use, 158-159
CHIP-seq, 172-179
advantages, 178
algorithms, 173-177
features of software packages, 179f
overview, 172-173
practical considerations, 177-178
454 FLX, 156, 156t
future of, 184
gene expression microarrays compared, 107
Illumina, 156, 156t
RNA-seq, 167-172
advantages, 167-168, 171-172
applications, 167-168
approaches to identifying transcript structure, 168-170, 168 f
overview, 167-168
transcript quantification, 170-171, 171f
sequencing services, 183-184
short-read mapping, 159-167
alignment programs, 166-167, 166t
characteristics of short reads, 159-160, 160f
indel alignment, 163-164
mapping output, 165-166
mapping quality/posterior probability, 162-163, $162 f$
paired-end alignment, 164-165, 165f
practical considerations, 166-167
quality score use in mapping, 163
repetitive reads, 161
scoring and filtering, 161-162
seeding, 160-161
variation detection, 180-183
copy-number variants, 180, 182
detecting large-scale variants, 182-183, 183f
detecting nucleotide-level variation, 180-182, 181f
genomic variants classified by scale, 180
Ng, Andrew, 80
Nimblegen, 181
Noise, 64
Nominal significance threshold, 140
Nonmaximum suppression, 105b
Nonparametric population-finding methods, 215-216
Nonparametric statistics, 30, 41
Normalization
one-color microarrays, 112-114
two-color microarrays, 110-111, 111f
NPV (negative predictive value), 54, 55f
Null distribution, 121, 140
Null hypothesis
described, 26
test statistic and, 27

0

Oases, 171, 171t
Object-oriented languages, 11
Octave, 79
Odds ratio, in GWAS, 129-130
Odds ratios, 37b-38b

ODEs (ordinary differential equations), 257, 257b-258b
OMSAA, 192
One-color microarrays
overview, 112
preprocessing and normalization, 112-114
two-color compared, 108
One-strand peaks, 176
Online mendelian inheritance in man (OMIM), 294t
Ontologies in biomedicine, 295-297, 296f
ORA. See Overrepresentation analysis
Ordinal features, 64
Ordinary differential equations (ODEs), 257, 257b-258b
Otsu's method for image segmentation, 94-95, 94f-95f
Outliers, 22, 24
Output, of the classifier, 50
Output variables, 66-67
Overfitting, 60, 62-64, 63f, 249
Overlapping reads, 169
Overrepresentation analysis (ORA), 224-227
assessing statistical significance of pathways, 232
correction for multiple hypotheses, 230t, 232
limitations of, 226-227
overview, 224-226, 225f
tools for, 230 t

P

Pacific Biosciences, 184
Paired distance, 164-165
Paired-end alignment, 164-165, 165f
Pairs of reads, 180
Palette indexing, 90, 91f
PAM (prediction across microarrays), 217
Paradigm, 263
Parallelizability, of algorithms, 14-15
Parameters, 250b
Parsing, 288f-289f, 289-290
Partial differential equations, 257, 257b-258b
Partitioning algorithms, 71-72, 118-119
Part of speech tagging, 288-289, 288f
PathBLAST, 276
Pathway, defined, 223-224
Pathway analysis
comparison of existing tools, 229-233, 230t-232t assessing statistical significance of pathways, 232 correction for multiple hypotheses, 230t-232t, 232-233
gene-level statistics, 230, 231t-232t
pathway-level statistics, 230, 232
current challenges in, 233-236
inability to model and analyze dynamic response, 236
inability to model effects of external stimulus, 236
incomplete and inaccurate annotations, 233-234, 235f
low-resolution knowledge bases, 233, 234 f
missing condition- and cell-specific information, 234-236
weak interpathway links, 236
functional class scoring approaches, 227-228
assessing statistical significance of pathways, 232
correction for multiple hypotheses, 230t, 232
limitations, 228
overview, 227-228
tools for, 231t
knowledge base-driven, 223-238
overrepresentation analysis (ORA), 224-227
assessing statistical significance of pathways, 232
correction for multiple hypotheses, 230t, 232
limitations of, 226-227
overview, 224-226, 225f
tools for, 230 t
pathway-topology-based approaches, 228-229, 232t
utility and confidence of, 236-237
Pathway-level statistics, 230, 232
Pathway models
Bayesian networks, 245-259
Boolean networks, 242-244, 242f, 245
challenges in, 241
differential equation models, 257b-258b
dynamic Bayesian networks, 244-245
modeling assumptions, 242
network inference, 241
robust, 244
Pathway-topology-based approaches, 228-229
Pattern Recognition and Machine Learning (Bishop), 79
PCA (principal component analysis), 78
PCR, quantitative (qPCR), 172-173
Peak finding, 174
Pearson, Karl, 29
Pearson correlation, 40-41, 42f, 114-115, 115f
PEMer, 183
Peptide identification, by mass spectrometry (MS), 191-194
accurate mass and time tag (AMT) approach, 193-194
database-driven approaches, 191-193
de novo sequencing, 194-195, 195t
estimating false positives, 193
peptide modifications, 95
target-decoy approach, 193
Peptide modifications, mass spectrometry and, 95
Peptide quantitation, mass spectrometry and, 196-199
labeled, 197-198, 198f
label-free, 196-197
selected reaction monitoring (SRM), 198-199, 198f
Percentile, 22
Perfect-match probes, 112
Performance evaluation, 53-57, 55f, 56f
Perfusion MRI, 89, 96-97
Perl programming language, 11
Permutation testing, 39, 141
Personalized medicine, 131

This is a free sample of content from A Bioinformatics Guide for Molecular Biologists.

Click here for more information or to buy the book.

Perturbation factor, 229
PET (positron emission tomography), 90
pFDR, 121
Pharmacogenetics, 131
Phenotypes
association with genotypes (see Genome-wide association study)
defined, 127-128
genotype-phenotype, 128-130, 128f
Pindel, 183
Pixel
bits per pixel (bpp), 85
defined, 84
pixelation, 85 f
volumetric, 91-92
PolyPhen, 150
Population mean, 22
Population stratification, 146-149, 148f
Population variance, 23
Positive predictive value (PPV), 54, 56
Positron emission tomography (PET), 90
Posterior probability, 68, 162
Power, statistical, 127-128, 141-144
PPV (positive predictive value), 54, 56
Practical Flow Cytometry (Shapiro), 200
Precision, 27, 54, 55 f
Prediction across microarrays (PAM), 217
Pred probability, 159
Pred score, 159
Preprocessing raw text, 288-290, 288f-289f
chunking and parsing, 288f-289f, 289-290
part of speech tagging, 288-289, 288f
stemming, 290
stop word removal, 290
tokenization, 288, 288 f
Primer extension, 135
Principal component analysis (PCA), 78
Probabilistic Graphical Models: Principles and Techniques (Koller and Friedman), 80
Probabilistic modeling, defined, 72
Probabilistic models, 72-76, 73f, 241-242
Bayesian network, 73f, 74-76
hidden Markov models (HMM), 73f, 74-76, 298, 298t
Probability
Bayes' Rule, 20-21
conditional, 18, 20, 68
described, 17-21
emission, 75
expectation, 21
joint, 19-20
Monty Hall problem, 18
notation, 18
posterior, 68, 162
transition, 75
Probability distribution, 213b-214b
Probes, for genotype calling, 135-136
Processors, 8, 8t, 9

Programming language
choosing best suited, 15
described, 9, 11
effect on running time, 12
object-oriented, 11
Programs
control flow in, 10
described, 9-11
for distributed systems, 9
ease of implementation, 15
executing, 8-9
functions and, 9
variables and, 10
Proof-of-principle, 2
Proportional hazard models, 42
Prostate cancer, meta-analysis of, 266, 268, 268 f
Protein identification, by mass spectrometry (MS), 195-196
false positives, 195-196
one peptide mapped to many proteins, 196
Proteins
mass spectrometry (MS) of
peptide identification, 191-194
peptide quantitation, 196-199
protein identification, 195-196
protein quantitation, 199
variations in, 188
Proteomics, 187-219
flow cytometry, 188-218
mass spectrometry (MS), 188-199
reasons for studying, 187
Proton, in MRI, 89
PubMed, 288
p value
interpretation of, 27
multiple-testing correction, 35-36
significant, 25
t distribution and, 29
Pyrophosphates, 156
Pyrosequencing, 156
Python programming language, $9,11,15,79$

Q

QPALMA, 169, 170, 171t
qPCR (quantitative PCR), 172-173
qRT-PCR (quantitative real-time-polymerase chain reaction), 108
Quadratic algorithm, 13
Quality score, 159, 162-163, 162f
Quantile normalization, 113
Quantile-quantile (QQ) plot, 148, 148f
Quantitative PCR (qPCR), 172-173
Quantitative real-time-polymerase chain reaction (qRT-PCR), 108
QuEST, 178, 179f
Question, formulation of, 25-26
q value, 36-37

This is a free sample of content from A Bioinformatics Guide for Molecular Biologists.
 Click here for more information or to buy the book.

R

Raf, 242f, 243-244, 246-252, 247f, 253b-254b
Random forests algorithm, 298, 298t
Random start, 251
Rank Product (RP) method, 122
Read length, 155-156, 156t
Reads
overlapping, 169
pairs of reads, 180
short-read mapping, 159-167
Recall, 54
Receiver operating characteristic curves (ROC), 56-57, 56f
Recombination
linkage disequilibrium and, 133
number per meiosis, 133
Reference panel, 143
Reference transcriptome, 168
Region finding, 174
Regression, example of, 63, 63f
Regression task, 50, 57
Regression tree, 71
Regulation of actin cytoskeleton pathway, 235
Representation of differential gene expression data, 263-265, 264f, 278-279
Reproducibility, statistical hypothesis testing and, 25
Resampling methods
bootstrapping, 38
jackknifing, 38-39
permutation testing, 39
Resolution, 84, 84f, 90
Reusability, in computer science, 11
RGB image, 85, 87 f
RMA (Robust Multiarray Analysis) model, 113-114
RNA-seq, 167-172
advantages, 167-168, 171-172
applications, $167-168$
approaches to identifying transcript structure, 168-170, 168f
with reference genome, 168-169, 168 f
without reference genome, 169-170
overview, 167-168
transcript quantification, 170-171, 171f
Robust, 244
Robust Multiarray Analysis (RMA) model, 113-114
ROC (receiver operating characteristic curves), 56-57, 56f
Root mean square error, 57
Root nodes, 246
RPKM, 170
RP (Rank Product) method, 122
R programming language, $9,11,113,203,261,265$
Bioconductor, 113, 265, 266
GEOquery, 266, 271-272
machine language algorithms, 79
programming exercise, 278-281
finding the data, 278
formulating a question, 278
integrating findings, 279
interpreting findings, 279
programming solution, 280
representation of differential gene expression, 278-279
Running time analysis of the algorithm, 12-13
RxNORM, 293, 294t

S

SAM (Significance Analysis of Microarrays), 120-122, 270, 270f, 277
SAM file format, 165-166
Sample mean, 21, 22
Samples, independent, 64
SAMtools, 166, 182
Sanger, Fred, 155
Sanger sequencing, 155
Scikit-learn, 79
Scoring, Bayesian, 249-250, 250b
Search
greedy random, 250
heuristic, 250
Seed, 160
Seeding, 160-161
Seed matches, 161
Segmentation. See Image segmentation
Selected reaction monitoring (SRM), 198-199, 198f
Self-organizing maps (SOMs), 120
Self-self hybridization, 110
Semisupervised clustering methods, 117-120, 119f
Semisupervised learning, 51, 52 f
Sensitivity, 54-57, 55f, 56f, 244
Sequencers, DNA, 155
SEQUEST algorithm, 191-192, 192b
Sex chromosomes, 126
Shifting, ChIP-seq reads, 174-175, 175f
SHOGUN Machine Learning Toolbox, 79
Short Oligonucleotide Analysis Package (SOAP), 166, 166t
Short-read mapping, 159-167
alignment programs, 166-167, 166t
characteristics of short reads, 159-160, 160 f
indel alignment, 163-164
mapping output, 165-166
mapping quality/posterior probability, 162-163, 162 f
paired-end alignment, 164-165, 165f
practical considerations, 166-167
quality score use in mapping, 163
repetitive reads, 161
scoring and filtering, 161-162
seeding, 160-161
SIFT (sorting intolerant from tolerant), 150
Signaling pathway, learning structure from flow cytometry data, 256

Signal shifting, 174-175, 175f
Significance
error and, 35
experiment-wide level, 35
Significance Analysis of Microarrays (SAM), 120-122, 270, 270f, 277
Significant, 25
SILAC (stable isotope labeling by amino acids in cell culture), 198
Silhouette plot, 118-119, 119f
Single-nucleotide polymorphisms (SNPs)
in cluster plot, 136-137, 136f
cost of SNP genotyping, 132
defined, 126
eye color and, 126, 127 f
genotype imputation, 142-143, 143f
GWAS, 130-137, 134f, 144-146
interpreting genetic associations, 144-145
linkage disequilibrium and, 132-133, 134f
number in human genome, 132
small effect sizes, 131
tag, 133
Skew, 22, 24, 24f
Sliding window, 173-174
Smoothing, 173-174, 173f
SNOMED-CT (systematized nomenclature of medical terminologies-clinical terms), 293, 294t
SNP caller, 182
SNP genotyping, 180
SNPs. See Single-nucleotide polymorphisms
SNVMix, 182
SOAP (Short Oligonucleotide Analysis Package), 166, 166 t
SOMs (self-organizing maps), 120
Space complexity analysis, 13-14
SPADE, 218
Spatial transformation, 100-101
Spearman rank correlation, 41, 42f, 114-115
Specificity, 54-57, 55f, 56f
Spectral resolution, 206
Split-read alignment, 168-169, 168f
Square errors criterion, 118
SRM (selected reaction monitoring), 198-199, 198f
SSAHA2 (sequence search and alignment by hashing algorithm), 166t, 167
SSD (sum of squared differences), 101-102
Standard deviation, 23-24
State of the process, 75
Statistical analysis of data, 25-39
Statistical approaches to data interpretation, 120-122, 121t
Statistical hypothesis testing, 25-28
multiple hypothesis testing, 34-36
steps in, 25-28
assumptions, 26
interpretation, 27-28
null hypothesis, 26
simple question, 25-26
summarizing data to test the statistic, 26-27
testing the hypothesis, 27
Statistically independent, 139
Statistical power of a study, 127-128
improving, 141-144
Statistical significance
described, 130
of pathways, 232
Statistical tests
on categorical data, 31-33
on continuous data, 28-30
Statistics
bias, 23
descriptive, 21-24
of dispersion, 22
of location, 22
nonparametric, 30
odd ratios, 37b-38b
q value, 36-37
resampling methods, 38-39
summary, 22
variance, 22-23
Stemming, 290
Stop word removal, 290
Storage
constant-time, 14
linear time, 14
space complexity and, 13-14
Storey, J.D., 121
Structural MRI, 89
Student's t-test, 29
Study sample, 142
Subtractive color mixing, 85
Summary statistics, 22
Sum of squared differences (SSD), 101-102
Supervised learning, 50, 52-53, 52f
Supervised learning algorithms, 67-72
decision tree, 71-72, 71f
k-nearest neighbors, 67-68
linear classification, 69-70
naive Bayes, 68-69
partitioning, 71-72
regression tree, 71
Support vector machines (SVM) algorithm, 70, 298, 298t
SVDetect, 183
Systematized nomenclature of medical terminologies-clinical terms (SNOMED-CT), 293, 294t

T

Tag SNPs, 133
Target-decoy approach, 193
t distribution, 28-30, 28f, 30f
Test error, 63-64, 63f

Testing error, 58-59
Test of statistical independence, 139
Test set, 58-61, 59f
Test statistic, 139-141
$\chi^{2}, 32$
described, 26-27
t, 28-30
in tests on continuous data, 28-30
Text. See Biomedical text
1000 Genomes Project, 142
Tibshirani, Robert, 79
Tokenization, 288, 288 f
TopHat, 169, 170-171, 171t
Training error, 58-59, 63-64, 63f
Training phase, of machine learning algorithm, 50
Training set, 58-61, 59f, 62-64
feature selection and, 66
multiple, 72
Trans-ABySS, 171, 171t
Transcription factor, binding to promoter, 258, 258b
Transformation, 100-101
affine, 101
nonrigid (elastic), 101
rigid, 100-101
Transformation of data, 207, 207f
Transition probabilities, 75
tRMA method, 114
True negative, 54, 55f
True positive, 53, 55f
t statistic, 28-30
t-test, 29, 110, 120-122
Tukey method, 36
Two-color microarrays
MA plots, 111, 111b
one-color compared, 108
overview, 109-110
preprocessing and normalization, $110-111,111 \mathrm{f}$
Type 1 error, 35, 120-121, 121t, 140
Type 2 error, 35

U

Unified medical language system (UMLS), 293, 294t-295t
Unsupervised clustering methods, 115-117, 116f-117f
Unsupervised learning algorithms, 76-78
dimensionality reduction, 78
hierarchical clustering, 77
k-means clustering, 77-78
Unsupervised learning tasks, 51, 52f, 53

V

Variability, measures of
ANOVA, 30
F distribution, 30
interquartile range, 24
t statistic, 30
variance, 23
Variable
described, 10
hidden, 254
sensitivity, 244
Variance
bias and, 23
covariance, 40
described, 22-23
population, 23
sample, 23, 27
standard deviation, 23-24
VariationHunter, 183
Velvet, 171, 171t
Visualization, 43-44, 44f
Volex, 91-92
v-structure, 252-253

W

Water, heavy, 198
Web Ontology Language (OWL), 297
Weka (program), 79
Welcome Trust Case-Control Consortium (WTCCC), 131, 132
While-loops, 10
Wilcoxon rank-sum test, 30
Wnt/ β-catenin pathway, 235
WordNet, 297

X

X! Tandem, 192

Y

Yates, John, 191

