ANTIBODIES A LABORATORY MANUAL • SECOND EDITION

ALSO FROM COLD SPRING HARBOR LABORATORY PRESS

Molecular Cloning: A Laboratory Manual, Fourth Edition

Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition

RNA: A Laboratory Manual Imaging: A Laboratory Manual

Imaging in Developmental Biology: A Laboratory Manual

Imaging in Neuroscience and Development: A Laboratory Manual

Live Cell Imaging: A Laboratory Manual, Second Edition

Phage Display: A Laboratory Manual

ANTIBODIES

A LABORATORY MANUAL • SECOND EDITION

EDITED BY

Edward A. Greenfield

Dana-Farber Cancer Institute

ANTIBODIES

A LABORATORY MANUAL • SECOND EDITION

All rights reserved

© 2014 by Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

Printed in the United States of America

Publisher John Inglis

Acquisition Editors Ann Boyle, Judy Cuddihy

Director of Editorial Development Jan Argentine

Developmental Editors Judy Cuddihy, Michael Zierler, Catriona Tonks

Project ManagerInez SialianoPermissions CoordinatorCarol BrownProduction EditorKathleen BubbeoProduction ManagerDenise WeissCover DesignerMichael Albano

Front and back cover artwork: Image of a VHH/antigen complex created by James R. Horn using PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC).

Library of Congress Cataloging-in-Publication Data

Using antibodies.

Antibodies: a laboratory manual/edited by Edward A. Greenfield. -- Second edition.

pages cm

Summary: "The focus of Antibodies: A Laboratory Manual, 2nd Edition, will be unchanged from the original edition by Ed Harlow and David Lane and will cover both the production and use of antibodies in a way that is accessible to the nonimmunologist. The emphasis will be on contemporary, essential antibody-based methods that are tried, true, necessary, and useful to a broad population of life scientists. The manual will provide up-to-date protocols that work reproducibly, along with explanations as to how and why methods work and how to choose between alternative approaches. Methods that have become research staples since the manual was originally published will be included at the same level of detail and organization as the existing topics"

- - Provided by publisher.

Includes bibliographical references and index.

ISBN 978-1-936113-80-4 (hardback) -- ISBN 978-1-936113-81-1 (paper)

1. Immunoglobulins -- Laboratory manuals. 2. Immunochemistry -- Laboratory manuals. I. Greenfield, Edward A., 1957-II. Title.

QR186.7.H37 2013 571.9'67--dc23

2013019474

10 9 8 7 6 5 4 3 2 1

Students and researchers using the procedures in this manual do so at their own risk. Cold Spring Harbor Laboratory makes no representations or warranties with respect to the material set forth in this manual and has no liability in connection with the use of these materials. All registered trademarks, trade names, and brand names mentioned in this book are the property of the respective owners. Readers should please consult individual manufacturers and other resources for current and specific product information.

With the exception of those suppliers listed in the text with their addresses, all suppliers mentioned in this manual can be found on the BioSupplyNet Web site at www.biosupplynet.com.

All World Wide Web addresses are accurate to the best of our knowledge at the time of printing.

Procedures for the humane treatment of animals must be observed at all times. Check with the local animal facility for guidelines.

Certain experimental procedures in this manual may be the subject of national or local legislation or agency restrictions. Users of this manual are responsible for obtaining the relevant permissions, certificates, or licenses in these cases. Neither the authors of this manual nor Cold Spring Harbor Laboratory assume any responsibility for failure of a user to do so.

The materials and methods in this manual may infringe the patent and proprietary rights of other individuals, companies or organizations. Users of this manual are responsible for obtaining any licenses necessary to use such materials and to practice such methods. COLD SPRING HARBOR LABORATORY MAKES NO WARRANTY OR REPRESENTATION THAT USE OF THE INFORMATION IN THIS MANUAL WILL NOT INFRINGE ANY PATENT OR OTHER PROPRIETARY RIGHT.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Cold Spring Harbor Laboratory Press, provided that the appropriate fee is paid directly to the Copyright Clearance Center (CCC). Write or call CCC at 222 Rosewood Drive, Danvers, MA 01923 (978-750-8400) for information about fees and regulations. Prior to photocopying items for educational classroom use, contact CCC at the above address. Additional information on CCC can be obtained at CCC Online at www.copyright.com.

For a complete catalog of all Cold Spring Harbor Laboratory Press publications, visit our website at www.cshlpress.org.

To my mom, Frances Greenfield, my sister, Sandie Sternstein, and my wife, Patricia Bixby, who have had to share me with all the hybridomas over the years

Contents

	Preface	XX
CHAPTER	1	
Preface CHAPTER 1 Antibody Production by the Immune System Stefanie Sarantopoulos INTRODUCTION Immune Responses Combat Microbial Invasion Innate and Adaptive Immunity Are Linked Together by Cell-Cell Interactions B Cells Differentiate into Antibody-Secreting Cells Memory B Cells Are Produced after an Initial Encounter with Foreign Antigens Adaptive Immunity Relies on Clonal Selection B Cells and Antibodies Can Distinguish Foreign Organisms and Molecules from Self Antibody Cross-Reactivity Antibodies Mediate Effector Functions CHAPTER 2 The Antibody Molecule Stefanie Sarantopoulos INTRODUCTION Antibody Structure Antibodies from the IgG Class Have Two Identical Antigen-Binding Sites In Addition to the IgG Molecules, Serum Contains Other Classes of Antibody Molecules Comparison of the Primary Amino Acid Sequences of Light Chains Reveals a Constant and a Variable Region Comparison of the Sequences of Heavy Chains Also Reveals Variable and Constant Regions The Variable Regions of the Heavy and Light Chains Form the Antigen-Binding Site Antibody Diversity DNA Rearrangements Are Required for the Formation of a Functional κ Gene DNA Rearrangements Are Required to Form a Functional λ Gene	1	
•	•	
	INTRODUCTION	1
	Immune Responses Combat Microbial Invasion	1
	Innate and Adaptive Immunity Are Linked Together by Cell-Cell Interactions	2
	B Cells Differentiate into Antibody-Secreting Cells	3
	Memory B Cells Are Produced after an Initial Encounter with Foreign Antigens	4
	Adaptive Immunity Relies on Clonal Selection	4
	B Cells and Antibodies Can Distinguish Foreign Organisms and Molecules from Self	ϵ
	Antibody Cross-Reactivity	6
	Antibodies Mediate Effector Functions	6
CHAPTER	2	
		g
	INTRODUCTION	g
	Antibody Structure	g
	Antibodies from the IgG Class Have Two Identical Antigen-Binding Sites	10
		11
		12
	. ,	12
	The Variable Regions of the Heavy and Light Chains Form the Antigen-Binding Site	14
		14
		14
	·	15
	Forming a Functional Heavy-Chain Gene Requires Two DNA Rearrangements	15

This is a free sample of content from Antibodies: A Laboratory Manual, Second Edition
Click here for more information or to buy the book.

viii	/	Contents
VIII	/	Comenis

	These Rearrangements and Additional Special Mechanisms Create a Vast Number of Antigen-Binding Sites	17
	Allelic Exclusion Ensures That Only One Rearranged Light-Chain Gene	
	and One Rearranged Heavy-Chain Gene Are Expressed in Any One B Cell	17
	Somatic Mutation and Affinity Maturation: The Hypervariable CDRs	18
	Additional Recombination Events Are Used to Generate the Different Classes and Subclasses of Antibodies	19
CHAPTER 3		
Antibody-	Antigen Interactions	21
Stefanie Sara	ntopoulos	
	INTRODUCTION	21
	Structure of the Antibody-Antigen Complex	21
	Affinity	24
	Avidity	24
CHAPTER 4	k	
Antibody I	Responses	31
Stefanie Sara	ntopoulos	
	INTRODUCTION	31
	B-Cell Receptor (BCR) and BAFF Receptor Signaling Is Required for B-Cell Survival	31
	Primary and Secondary Antibody Responses to Vaccination Occur with Stereotypical Kinetics	32
	At the End of the Primary Response, the Antigen Is Cleared, Leaving Primed Memory Cells	32
	Subsequent Injections of Antigen Induce a More Potent "Secondary" Antibody Response	33
	The Type of Antigen and Its Method of Delivery Can Determine the Type of Immune Response	33
	Antigen Is Presented to T Cells after Phagocytosis and Antigen Processing by APCs	34
	Characteristics of the T-Cell Receptor Genes and Protein Account for Their Capacity to Recognize Antigens	35
	Properties of the Interactions between Class II and Peptide and between MHC-Peptide Complex and the TCR Explain Why Only Some Compounds Make Good Antigens	35
	High-Affinity Antibody Production Requires Both TCR Binding to an Antigen- Fragment-Class II Protein Complex on an APC and BCR Recognition of That Antigen	36
	B-Cell Activation Requires Second Signal Delivery That Occurs with T-Cell-B-Cell Synapse	36
	Additional Signals and Cytokines Lead to B-Cell Activation and Differentiation	37
	Immune Tolerance Can Result in Difficult-to-Produce Antibodies	37
	High-Affinity, Functional Antibody Production Occurs in the Germinal	2,
	Center Reaction	39
	Binding of T _{FH} Cells to B Cells Leads to Proliferation and Differentiation of B Cells	39

This is a free sample of content from Antibodies: A Laboratory Manual, Second Edition.		
Click here for more information or to buy the book.		
Contents	/	ix

CHAPTER 5		
Selecting the	Antigen	43
Edward A. Green	nfield, James DeCaprio, and Mohan Brahmandam	
	INTRODUCTION	44
	Immunogenicity	44
	Sources of Immunogens	49
	Making Weak Antigens Strong	61
	PROTOCOLS	66
	1 Modifying Antigens by Dinitrophenol Coupling	66
	2 Modifying Antigens by Arsynyl Coupling	67
	3 Modifying Protein Antigens by Denaturation	69
	4 Preparing Immune Complexes for Injection	70
	5 Coupling Antigens to Red Blood Cells	72
	6 Coomassie Brilliant Blue Staining	73
	7 Sodium Acetate Staining	74
	8 Copper Chloride Staining	75
	9 Side-Strip Method	76
	10 Fragmenting a Wet Gel Slice	77
	11 Lyophilization of a Gel Slice	78
	12 Electroelution of Protein Antigens from Polyacrylamide Gel Slices	79
	13 Electrophoretic Transfer to Nitrocellulose Membranes	81
	14 Autoradiography	83
	15 Cross-Linking Peptides to KLH with Maleimide	85
	16 Preparing GST-Fusion Proteins from Bacteria	87
	17 Preparing His-Fusion Proteins from Bacteria	89
	18 Preparing MBP-Fusion Proteins from Bacteria	92
	19 Sarkosyl Preparation of Antigens from Bacterial Inclusion Bodies	95
	20 Preparing mFc- and hFc-Fusion Proteins from Mammalian Cells	97
	21 Preparing Live Cells for Immunization	100
	22 Preparing Antigens Using a Baculovirus Expression System	101
	23 Transfected Dendritic Cell Immunizations	104
CHAPTER 6		
Immunizing .	Animals	107
Edward A. Green	nfield	
	INTRODUCTION	108
	Anesthesia	112
	Adjuvants	113
	Form of the Immunogen	118
	Routes of Injection	120
	Sampling Serum	127

X	/	Contents

Ser	um Preparation	129
Exs	anguination	129
Ind	ucing Ascites Fluid in Mice	129
Clo	sing Comments	130
PRO	OTOCOLS	136
And	esthesia and Adjuvants	136
1	Administering Anesthesia to Mice, Rats, and Hamsters	136
2	Administering Anesthesia to Rabbits	139
3	Preparing Freund's Adjuvant	142
4	Using Ribi Adjuvant	144
5	Using Hunter's TiterMax Adjuvant	145
6	Using Magic Mouse Adjuvant	146
7	Preparing Aluminum Hydroxide (Alum) Adjuvant	148
Rot	ites of Antigen Injection	150
8	Injecting Rabbits Subcutaneously	150
9	Subcutaneous Injections with Adjuvant into Mice and Rats	152
10	,	153
11	Immunizing Mice and Rats with Nitrocellulose-Bound Antigen	154
12	Injecting Rabbits Intramuscularly	157
13	Injecting Rabbits Intradermally	159
14	Injecting Rabbits Intravenously	161
15	Injecting Mice Intravenously	163
16	Intraperitoneal Injections with Adjuvant into Mice and Rats	165
17	Intraperitoneal Injections without Adjuvant into Mice and Rats	166
18	Immunizing Mice, Rats, and Hamsters in the Footpad or Hock	168
Ser	um Sampling and Preparation	170
19	Sampling Rabbit Serum from the Marginal Ear Vein	170
20	Sampling Mouse Serum from the Tail Vein	172
21	Sampling Rat Serum from the Tail Vein	174
22	Sampling Mouse and Rat Serum from the Retro-Orbital Sinus	175
23	Sampling Mouse and Rat Serum from the Submandibular Vein	177
24	Sampling Mouse and Rat Serum from the Saphenous Vein	179
25	Serum Preparation	181
lmı	nunization Protocols	182
26	Induction of Ascites Using Freund's Adjuvant	182
27	Induction of Ascites in BALB/c Mice Using Myeloma Cells	183
28	Standard Immunization of Mice, Rats, and Hamsters	184
29	Standard Immunization of Rabbits	186
30	Repetitive Immunization at Multiple Sites (RIMMS) of Mice, Rats, and Hamsters	188
31	Subtraction Immunization for Mice, Rats, and Hamsters	189
32	Decoy Immunization for Mice, Rats, and Hamsters	190
33	Adoptive Transfer Immunization of Mice	191
2/	cDNA Immunization of Mice Rate and Hamsters	102

Contents / xi

1	Harvesting Tissue	194
	35 Euthanizing Mice, Rats, and Hamsters Using CO ₂ Asphyxiation	194
	Harvesting Spleens from Mice, Rats, and Hamsters	196
3	Harvesting Lymph Nodes from Mice, Rats, and Hamsters	198
CHAPTER 7		
Generating Mono	oclonal Antibodies	201
Edward A. Greenfield		
ı	INTRODUCTION	202
(Characteristics of Monoclonal Antibodies	203
I	Production of Monoclonal Antibodies	207
I	Developing the Screening Method	207
(Generating Hybridomas	216
I	Preparation for Fusions	217
I	Fusions	220
I	Plating Strategies	222
I	Feeding Hybridomas	224
9	Supernatant Collection Strategies for Screening	224
9	Screening	225
I	Expanding and Freezing Positive Clones	225
I	Dealing with Contamination	229
1	sotyping and Subclassing of Monoclonal Antibodies	231
1	Interspecies Hybridomas	234
I	Human Hybridomas	234
I	Future Trends	235
1	PROTOCOLS	238
	1 Antibody Capture in Polyvinyl Chloride Wells: Enzyme-Linked Detection (Indirect ELISA)	238
	2 Antibody Capture in Polyvinyl Chloride Wells: Enzyme-Linked Detection When Immunogen Is an Immunoglobulin Fusion Protein (Indirect ELISA to Detect Ig Fusion Proteins)	240
	3 Antibody Capture on Nitrocellulose Membrane: Dot Blot	242
	4 Antibody Capture on Nitrocellulose Membrane: High-Throughput Western Blot Assay for Hybridoma Screening	244
	5 Antibody Capture on Whole Cells: Cell-Surface Binding (Surface Staining by Flow Cytometry/FACS)	246
	6 Antibody Capture on Permeabilized Whole Cells Binding (Intracellular Staining by Flow Cytometry/FACS)	249
	7 Antibody Capture on Whole Cells: Cell-Surface Binding (Surface Staining by Immunofluorescence)	251
	8 Antibody Capture on Permeabilized Whole Cells (Immunofluorescence)	253
	9 Antibody Capture on Tissue Sections (Immunohistochemistry)	255
	10 Antigen Capture in 96-Well Plates (Capture or Sandwich ELISA)	258

vii	/	C_{α}	nto	nts
XII	/ ($\cup O$	nte	nts

	11	Antigen Capture on Nitrocellulose Membrane: Reverse Dot Blot	261
	12	Antigen Capture in Solution: Immunoprecipitation	263
	13	Screening for Good Batches of Fetal Bovine Serum	264
	14	Preparing Peritoneal Macrophage Feeder Plates	266
	15	Preparing Myeloma Cell Feeder Layer Plates	267
	16	Preparing Splenocyte Feeder Cell Cultures	269
	17	Preparing Fibroblast Feeder Cell Cultures	271
	18	Screening for Good Batches of Polyethylene Glycol	272
	19	Polyethylene Glycol Fusion	274
	20	Fusion by Sendai Virus	279
	21	Electro Cell Fusion	281
	22	Single-Cell Cloning by Limiting Dilution	286
	23	Single-Cell Cloning by Growth in Soft Agar	288
	24	Determining the Class and Subclass of a Monoclonal Antibody by Ouchterlony Double-Diffusion Assays	291
	25	Determining the Class and Subclass of Monoclonal Antibodies Using Antibody Capture on Antigen-Coated Plates	294
	26	Determining the Class and Subclass of Monoclonal Antibodies Using Antibody Capture on Anti-Immunoglobulin Antibody-Coated Plates	297
	27	Determining the Class and Subclass of Monoclonal Antibodies Using Flow Cytometry	300
Edward A. Gr	eenfield		
	INT	TRODUCTION	303
	Gro	owing Hybridomas and Myelomas	304
	Cel	Il Culture	304
	Cor	ntamination of Cell Cultures	309
	Pro	ducing and Storing Monoclonal Antibodies	313
	Dru	ug Selection for Hybridomas	316
	PRO	OTOCOLS	318
	1	Counting Myeloma or Hybridoma Cells	318
	2	Viability Checks	320
	3	Freezing Cells for Liquid Nitrogen Storage	321
	4	Recovering Cells from Liquid Nitrogen Storage	323
	5	Ridding Cell Lines of Contaminating Microorganisms by Antibiotics	325
	6	Ridding Cell Lines of Contaminating Microorganisms with Peritoneal Macrophages	327
	7	Ridding Cell Lines of Contaminating Microorganisms by Passage through Mice	328
	8	Testing for Mycoplasma Contamination by Growth on Microbial Medium	330
	9	Testing for Mycoplasma Contamination by Hoechst Dye 33258 Staining	332
	10	Testing for Mycoplasma Contamination Using PCR	334

		Contents	/	xiii
1:	0 / 1			
	and Single-Cell Cloning			340
1:	0 / 1 / 0 0			342
14				344
1.				346
10				347
1: 1:				349 350
CHAPTER O				
CHAPTER 9 Characterizing An	tihodies			353
•	nd Robert H. Carnahan			333
	NTRODUCTION			353
	ntigen Binding			353
1	he Antibody Backbone			361
	ROTOCOL			366
	1 Isotope Determination of Rodent-Derived Monoclonal Antibodies Using Sandwich ELISA			366
CHAPTER 10	e 1.64			274
Antibody Purifica	9			371
Jordan B. Fishman and	d Eric A. Berg			
11	NTRODUCTION			371
Is	solation of a Total IgG Fraction			372
A	nion-Exchange Chromatography			373
C	Other Ion-Exchange Methods for the Isolation of Antibodies			374
Р	rotein A and Protein G Chromatography			375
Р	urification of Chicken (IgY) Antibodies			375
Р	urification of Fab and F(ab')2 Fragments			376
Р	urification of IgM			376
	ffinity Purification of Antibodies			377
	arge-Scale Antibody Production			382
Α	ntibody Storage			383
P	ROTOCOLS			385
,	1 Ammonium Sulfate Fractionation of Antibodies			385
:	Preparation of Antibody Using Caprylic Acid			387
:	Purification of Antibodies: Low-pH DEAE Chromatography			389
	4 Purification of Antibodies: High-pH DEAE Chromatography			391
!	5 Protein A Purification of Antibodies			393
	6 Protein G Purification of Antibodies			395
	7 Isolation of IgY from Chicken Eggs: Sodium Sulfate Method			397

This is a free sample of content from Antibodies: A Laboratory Manual, Second Edition.
Click here for more information or to buy the book.

	8 Isolation of IgY from Chicken Eggs: Polyethylene Glycol Method	399
	9 Conjugation of Peptides to Thiol-Reactive Gel	401
	10 Peptide Affinity Purification of Antibodies	403
CHAPTER 11		
Engineering	Antibodies	405
	n and Amy L. Dasch	
	INTRODUCTION	405
	PROTOCOLS	407
	1 Creation of Recombinant Antibodies Using Degenerate Oligonucleotides	407
	2 Creation of Recombinant Antibodies Using 5'-RACE	410
	3 Using Phage Display to Create Recombinant Antibodies	412
	4 Modification of Antibody Function by Mutagenesis	422
	5 Rescue Strategy for Nonviable Hybridomas	424
	CONCLUSION	428
CHAPTER 12		
Labeling An	tibodies	429
•	d Jordan B. Fishman	
	INTRODUCTION	429
	Choosing a Labeling Target	430
	Selecting Appropriate Cross-Linkers	431
	PROTOCOLS	435
	Labeling Antibodies by Biotinylation	435
	1 Labeling Antibodies with NHS-LC-Biotin	436
	2 Biotinylating Antibodies Using Biotin Polyethylene Oxide (PEO) Iodoacetamide	438
	3 Biotinylating Antibodies Using Biotin-LC Hydrazide	440
	Labeling Antibodies with Fluorophores	442
	4 Labeling Antibodies Using NHS-Fluorescein	444
	5 Labeling Antibodies Using a Maleimido Dye	446
	Forming Protein-Antibody Conjugates	448
	6 Conjugation of Antibodies to Horseradish Peroxidase	450
	7 Labeling Antibodies with Cy5-Phycoerythrin	452
	Labeling Antibodies with Metals and Elements	455
	8 Labeling Antibodies Using Europium	457
	9 Labeling Antibodies Using Colloidal Gold	459
	Radiolabeling Antibodies	461
	10 Iodination of Antibodies with Immobilized Iodogen	462

This is a free sample of content from Antibodies: A Laboratory Manual, Second Edition
Click here for more information or to buy the book.

	Contents	/ XV
	Cleanup, Purification, and Storage of Antibody Conjugates	464
	11 Desalting or Buffer Exchange Using Size-Exclusion Chromatography	467
CHAPTER 13		
Immunoblottii	og.	469
Larisa Litovchick	ig .	403
Larisa Litoveriick		
	INTRODUCTION	470
	Choice of Antibody	471
	Detection Methods	473
	Experimental Strategies	473
	PROTOCOLS	479
	Sample Preparation	479
	1 Preparing Whole-Cell Lysates for Immunoblotting	480
	2 Preparing Protein Solutions for Immunoblotting	484
	3 Preparing Immunoprecipitations for Immunoblotting	487
	Resolution of the Proteins in the Sample	490
	4 Resolving Proteins for Immunoblotting by Gel Electrophoresis	491
	Transfer of Proteins from Gels to Membranes	497
	5 Semi-Dry Electrophoretic Transfer	499
	6 Wet Electrophoretic Transfer	503
	7 Staining the Blot for Total Protein with Ponceau S	507
	Blocking and Incubation with Antibodies	509
	8 Blocking and Incubation with Antibodies: Immunoblots Prepared with Whole-Cell Lysates and Purified Proteins (Straight Western Blotting)	510
	9 Blocking and Incubation with Antibodies of Immunoblots Prepared with	
	Immunoprecipitated Protein Antigens (Immunoprecipitation/Western Blotting)	515
	Detection	519
	10 Detection with Enzyme-Labeled Reagents	521
	11 Detection with Fluorochromes	525
	Reprobing the Membrane after Immunoblotting Using Chemiluminescence or Fluorochromes	526
	12 Stripping of the Blot for Reprobing	527
CHAPTER 14		
Immunoprecip	pitation	531
	and Thomas O. Kohl	331
	INTRODUCTION	532
	Cell Preparation	534
	Cell Lysis	534
	Antibodies	537
	Forming an Antibody-Antigen Complex	538
	Epitope Tags	539

xvi	/ Contents

	Immunoadsorbants	539
	Visualizing Immune Complexes	541
	Optimization	542
	Background Problems	543
	Controls	543
	PROTOCOLS	545
	Radiolabeling Protein Antigens	545
	1 Metabolic Labeling of Antigens with [35S]Methionine	546
	2 Pulse-Chase Labeling of Antigens with [³⁵ S]Methionine	552
	3 Metabolic Labeling of Antigens with [³² P]Orthophosphate	558
	Cell Lysis	563
	4 Freezing Cell Pellets for Large-Scale Immunoprecipitation	563
	5 Detergent Lysis of Tissue Culture Cells	565
	6 Detergent Lysis of Animal Tissues	568
	7 Lysis Using Dounce Homogenization	571
	8 Differential Detergent Lysis of Cellular Fractions	575
	9 Lysing Yeast Cells with Glass Beads	579
	Alternative Protocol: Using Lysis Buffer 2 without Detergents	582
	10 Lysing Yeast Cells Using a Coffee Grinder	585
	11 Denaturing Lysis	588
	Cross-Linking Antibodies to Beads	591
	12 Cross-Linking Antibodies to Beads Using Dimethyl Pimelimidate (DMP)	59 3
	13 Cross-Linking Antibodies to Beads with Disuccinimidyl Suberate (DSS)	597
	Immunoprecipitation	601
	14 Immunoprecipitation	602
	15 Tandem Immunoaffinity Purification Using Anti-FLAG and Anti-HA Antibodies	607
	Chromatin Immunoprecipitation	614
	16 Chromatin Immunoprecipitation	617
	17 Dual Cross-Linking for Chromatin Immunoprecipitation	625
CHAPTER 15		
Immunoassays		629
Thomas O. Kohl a	nd Carl A. Ascoli	
	INTRODUCTION	629
	Deciding Where to Start	630
	Detecting and Quantitating Antigens	630
	Detecting and Quantifying Antibodies	632
	Selecting the Appropriate Microtiter Plate for Your Assay	632
	ELISA Blocking Buffers	635
	ELISA Wash Buffers	636
	Reporter-Labeled Secondary Antibodies	636
	Immunoassay Substrates	637

		Contents	/	xvii
	ELISA Parameters			639
	ELISA Validation Parameters			640
	Types of Immunoassays			642
	PROTOCOLS			644
	1 Indirect Immunometric ELISA			644
	2 Immunometric Antibody Sandwich ELISA			651
	3 Immunometric Double-Antibody Sandwich ELISA			658
	4 Direct and Indirect Cell-Based ELISA			661
	5 Direct Competitive ELISA			666
	6 Indirect Competitive ELISA			670
CHAPTER 16				
Cell Staining Scott J. Rodig				675
	INTRODUCTION			676
	Major Constraints			676
	Choice of Antibody			677
	Protocols for Cell Staining			679
	Troubleshooting Background Problems			683
	PROTOCOLS			686
	1 Growing Adherent Cells on Coverslips or Multiwell Slides			686
	2 Growing Adherent Cells on Tissue Culture Dishes			687
	3 Attaching Suspension Cells to Slides Using the Cytocentrifuge			688
	4 Attaching Suspension Cells to Slides Using Poly-L-Lysine			689
	5 Preparing Cell Smears			690
	6 Attaching Yeast Cells to Slides Using Poly-L-Lysine			691
	7 Preparing Frozen Tissue Sections			693
	8 Preparing Paraffin Tissue Sections			696
	 Additional Protocol: Heat-Induced Epitope Retrieval 			698
	9 Preparing Cell Smears from Tissue Samples or Cell Cultures			700
	10 Embedding Cultured Cells in Matrigel			701
	11 Fixing Attached Cells in Organic Solvents			703
	12 Fixing Attached Cells in Paraformaldehyde or Glutaraldehyde			705
	13 Fixing Suspension Cells with Paraformaldehyde			707
	14 Lysing Yeast			708
	15 Binding Antibodies to Attached Cells or Tissues			709
	16 Binding Antibodies to Cells in Suspension			711
	17 Detecting Horseradish Peroxidase-Labeled Cells Using Diaminobenzidine			713
	18 Detecting Horseradish Peroxidase-Labeled Cells Using Diaminobenzidine and Metal Salts			715
	19 Detecting Horseradish Peroxidase-Labeled Cells Using Chloronaphthol			716
	20 Detecting Horseradish Peroxidase-Labeled Cells Using Aminoethylcarbazol	le		717
	21 Detecting Alkaline Phosphatase–Labeled Cells Using NABP-NF			718

This is a free sample of content from Antibodies: A Laboratory Manual, Second Edition
Click here for more information or to buy the book.

vviii	Contonto
XVIII	/ Contents

	22 Detecting Alkaline Phosphatase-Labeled Cells Using BCIP-NBT	719
	23 Detecting β-Galactosidase-Labeled Cells Using X-Gal	721
	24 Detecting Fluorochrome-Labeled Reagents	722
	25 Detecting Gold-Labeled Reagents	725
	26 Detecting Iodine-Labeled Reagents	727
	27 Counterstaining Cells	729
	28 Mounting Cell or Tissue Samples in DPX	730
	29 Mounting Cell or Tissue Samples in Gelvatol or Mowiol	731
	30 Photographing the Samples	733
CHAPTER 17		
Antibody Scr	eening Using High-Throughput Flow Cytometry	735
Thomas D. Duer	nsing and Susan R. Watson	
	INTRODUCTION	735
	Overview of Flow Cytometry	735
	Plate-Based Flow Cytometry	738
	Designing and Optimizing Flow Cytometry-Based Screening Assays	738
	PROTOCOLS	742
	1 Simple Multiplexed Antibody-Binding Assay	742
	High-Throughput Functional Assays for Further Assessment of Antibodies	746
	2 Complement-Dependent Cytotoxicity Assay	747
	3 Assessment of Apoptosis (Programmed Cell Death)	749
	4 Antibody-Dependent Cellular Cytotoxicity (ADCC) by Flow Cytometry	751
APPENDIX I		
Electrophores	sis	755
	SDS-Polyacrylamide Gel Electrophoresis	756
	Solutions for Tris/Glycine SDS-Polyacrylamide Gel Electrophoresis	758
	Alternative Buffer Systems for Discontinuous Polyacrylamide Gel Electrophoresis	759
	Partial Proteolytic Peptide Maps—V8 Protease	760
	Two-Dimensional Isoelectric Focusing/SDS-Polyacrylamide Gel Electrophoresis	762
	Alkylation of Proteins before Running on a Gel	765
	PPO Fluorography	766
	Counting ³⁵ S, ¹⁴ C, or ³ H from Polyacrylamide Gel Slices	767
	Counting ³² P or ¹²⁵ I from Polyacrylamide Gel Slices	767
	Coomassie Blue Staining—Standard Method	768
	Coomassie Blue Staining—Quick Method	768
	Coomassie Blue Staining—Maximal Sensitivity	769
	Silver Staining of Gels—Ammoniacal Silver Staining	770
	Silver Staining of Gels—Neutral Silver Staining	771
	Copper Staining of Gels	772

		Contents /	XIX
	Fixing Gels		773
	Drying Gels		773
	Rehydrating Dried Polyacrylamide Gels		774
	Autoradiography and Fluorography		775
	Sensitivities of Autoradiography versus Fluorography		775
	sensitivities of Autoraciography versus Fluorography		773
APPENDIX II			
Protein Tech	nniques		777
	Ammonium Sulfate Saturation Tables		778
	Proteins Used as Molecular Weight Standards		779
	Amino Acids		780
	Genetic Code		781
	Mitochondrial Genetic Code		782
	Amino Acid and Codon Usage		783
	Log-Odds Matrix for Relationships between Protein Sequences (MDM ₇₈)		785
	Accepted Amino Acid Substitutions		786
	Common Protein Sequence Motifs		787
	David's Life Chart II		788
	Protein Quantitation—Bradford		789
	Protein Quantitation—Bradford Spot Test		790
	Protein Quantitation—Coomassie Spot Test		790
	Protein Quantitation—UV Detection		791
	Protein Quantitation—Bicinchoninic Acid		792
	Protein Quantitation—Lowry		792
	Protein Quantitation—NanoDrop		793
	Concentration of Protein Samples by Ultrafiltration		793
	Magnetic Beads—Immunoprecipitation		793
	Proteases		794
	Protease Inhibitors		794
	Preparing Dialysis Tubing		795
	TCA Precipitation—Filtration		795
	TCA Precipitation—Spotting		796
	Chromogenic Substrates Yielding Water-Soluble Products		797
	Chromogenic Substrates Yielding Water-Insoluble Products		797
A DDENIDIV III			
APPENDIX II General Info			799
	Commonly Used Buffers		800
	Preparation of Stock Solutions		801
	Concentrations of Commercial Liquids		803
	Strains of Laboratory Mice		803
	Detergents		804

xx / Contents

	Detergent Removal	805
	Properties of Many Commonly Used Detergents	806
APPENDIX	IV	
Bacterial Expression		809
	Screening for Expression in Bacteria—SDS Lysis	810
	Screening for Expression in Bacteria—Chloroform Lysis	811
	λ Maps	812
	Plasmid Maps	816
	Gateway Expression Vectors	817
APPENDIX	V	
General Safety and Hazardous Material Information		819
Index		825

General Safety and Hazardous Material Information

This manual should be used by laboratory personnel with experience in laboratory and chemical safety or students under the supervision of such trained personnel. The procedures, chemicals, and equipment referenced in this manual are hazardous and can cause serious injury unless performed, handled, and used with care and in a manner consistent with safe laboratory practices. Students and researchers using the procedures in this manual do so at their own risk. It is essential for your safety that you consult the appropriate Material Safety Data Sheets, the manufacturers' manuals accompanying equipment, and your institution's Environmental Health and Safety Office, as well as the General Safety and Hazardous Material Information in Appendix V for proper handling of hazardous materials described in this manual. Cold Spring Harbor Laboratory makes no representations or warranties with respect to the material set forth in this manual and has no liability in connection with the use of these materials.

All registered trademarks, trade names, and brand names mentioned in this book are the property of the respective owners. Readers should consult individual manufacturers and other resources for current and specific product information. Appropriate sources for obtaining safety information and general guidelines for laboratory safety are provided in the General Safety and Hazardous Material Information Appendix of this manual.

Preface

HAVE REALLY ENJOYED UPDATING AND REVISING THIS MANUAL. Everyone I know in the antibody world has a copy of the first edition of this book. Ed Harlow and David Lane must be acknowledged for being the first to demystify hybridoma generation for the nonimmunologist. It is my hope to build on their work, continuing to provide easy-to-follow information and protocols that will allow anyone with a desire to make a monoclonal antibody to succeed.

For many years I have thought about collecting my notes and protocols—all the little tricks of the trade and lessons learned through years of experience—and writing them up as guide for antibody makers. I wanted it to be something of a troubleshooting guide—a manual to go to when things were not going as planned and a place to turn when the usual protocols were not giving the desired results. With the arrival of the internet—antibody-related websites like the Antibody Resource Page and antibody network groups providing information and connections between antibody developers and users—it did not seem to be a pressing need to take the time to gather all the little tidbits of information I had accumulated over the years. Friends and colleagues told me that they still thought it would be worthwhile putting it all together in one place as a reference. Then I was asked if I would be interested in helping to revise the 1988 Harlow and Lane text. Opportunity came knocking; how could I refuse?

When I first got involved making hybridomas, I researched the technology, read the 1975 Köhler and Milstein *PNAS* paper that had been published less than eight years previously, and talked with as many people as I could find who had been making monoclonal antibodies. Then I had my first encounter with *Antibodies: A Laboratory Manual* by Ed Harlow and David Lane. It was during my days as a graduate student in Pathology at Albany Medical College in New York. Immunology was a developing field that was just being applied to pathology (autoimmune disease), which piqued my interests. I was involved with setting up a hybridoma laboratory at the Wadsworth Center, New York State Department of Health, at Empire Plaza, Albany. The *Antibodies* manual provided our laboratory with guidance in the form of protocols and recommendations for setting up a hybridoma facility. Everything we needed to know to make a monoclonal antibody was all there, neatly packaged in an easy-to-understand book.

Those were the days! Preparation for fusion started around 7 a.m. collecting macrophage feeder cells and plating out 200- to 300-microtiter plates for the fusion. The guest of honor would arrive around 9 a.m., its spleen would be harvested and teased apart, and the lymphocytes counted (by hand of course). By midday we would have the lymphocyte-to-myeloma cell ratio calculated and the number of plates ready for the newly fused hybridoma cells at 0.5 cells per well. We did not have sterile plasticware like pipettes or multichannel pipetters. Everything was made from glass that we acid-washed and then autoclaved. ELISA was just catching on as a screening assay that was read on a beam spectrophotometer, one well at a time. Caring for and screening a fusion took a significant amount of time.

After 25 years, monoclonal technology has not changed all that much. Laboratories still immunize mice with an antigen mixed with Freund's adjuvant. They boost the mice every other week or so, collect the spleen, and fuse myeloma cells with murine B lymphocytes to produce hybridomas using PEG and HAT selection. Yes, other methods like electrofusion have been developed, but most laboratories still use the traditional method. What has changed considerably is our understanding of the immune system and the methods we employ to screen fusions. The original edition of this book

xxii / Preface

refers to many radiological screening assays like RIA (radioimmunoassay). Today, radioisotope methodologies have been replaced by safer, more environmentally friendly protocols using chemical colorimetric and chemiluminescent readouts. The instruments we use are now automated and more accurate. Developing monoclonal antibodies is still a lot of effort, but the work has become more manageable.

Monoclonal antibody generation is most definitely a learning experience. No two antigens induce the same response. Some can be very elusive. Having mastered the fusion technology really well, I find the challenge is in getting the animal to respond and make the antibody necessary for a particular investigator's project. Antibodies can be very odd moieties. Some bind particular epitopes with single-amino-acid specificity, whereas others can be extremely promiscuous, binding similar epitopes in unrelated proteins. Some antibodies work well in some conditions but not at all in others. Different antibodies to the exact same epitope can bind stronger or only weakly, or activate a receptor or block it. Each antibody project is a unique challenge. It is important to select the best form of immunogen for a particular application, choose the right species of animal, present the immunogen to its immune system in the correct way, and then devise a screening assay to identify hybridomas making the antibody. All these things have to line up perfectly to ensure success.

As with the first edition of *Antibodies*, the second edition is intended to provide the necessary information and protocols to assist investigators with their first monoclonal antibody effort, as well as provide guidance for more experienced antibody makers who are having some difficulties with a particular project. With this in mind, the revised edition was expanded to include chapters on antibody characterization, antibody engineering, and flow cytometry. The original chapter on immunizations was split into two chapters: one covering different forms of antigens used for immunizations and a second on various immunization strategies with an expanded protocol section. Other chapters from the first edition have been updated and augmented, with emphasis placed on including protocols and advice for both novice and well-seasoned immunologists.

I would like to thank Jim DeCaprio for getting me involved in this project. I am also very grateful to Vijay Kuchroo for being a patient teacher, great mentor, and good friend over the years I was a postdoc in his laboratory and all the many years we have worked together since then. I must also express my appreciation to the Cold Spring Harbor Laboratory Press team—Judy Cuddihy, our Editor; Michael Zierler, our Developmental Editor; Inez Sialiano, Project Manager; Jan Argentine, Director of Editorial Development; Kathleen Bubbeo, Production Editor; Denise Weiss, Production Manager; and John Inglis, Publisher—for all their help, guidance, and patience coordinating all the authors, chapters, and shifting deadlines that made this revised edition possible.

It is my sincere hope that the revised edition of this book will provide help and insights into the development and use of monoclonal antibodies. I find each new antigen challenging and enjoy seeing all of our "kids" going forth into the world making names for themselves as investigators put them to use, making exciting new discoveries that benefit us all.

ED GREENFIELD, PhD

Director, Monoclonal Antibody Core Dana-Farber Cancer Institute Boston, Massachusetts