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RNA Sequencing with Next-Generation
Sequencing

Stuart M. Brown and Jeremy Goecks

Sequencing of RNA has been an important application of DNA sequencing technol-
ogy since its invention. RNA is usually sequenced by first converting it to comple-
mentary DNA (cDNA) with the reverse transcriptase enzyme (RNA-dependent
DNA polymerase). Reverse transcriptase was originally isolated from Rous sarcoma
retrovirus and Rauscher mouse leukemia retrovirus (R-MLV) by Baltimore (1970)
and independently by Temin (1970). In 1972, Verma et al. and Bank et al. developed
efficient systems to copymessenger RNA (mRNA) to cDNAbyaddingDNAnucleo-
tide triphosphates and and short pieces of oligo(dT), which hybridize to the poly(A)
tail of the mRNAs and act as a primer.

cDNA is frequently the subject of sequencing studies, because this an efficient
method to discover the coding sequence of expressed genes or for finding gene cod-
ing regions in genomic DNA sequence. Craig Venter expanded this method by col-
lecting large numbers of short single reads from the 30 ends of mRNA, which were
called expressed sequence tags (ESTs). Early EST sequencing of human cells was
extraordinarily productive, resulting in the discovery of many thousands of new
genes (Adams et al. 1991, 1992). The EST method allowed for a rough form of
gene expressionmeasurements in a variety of cell types and some differential expres-
sion studies were conducted in this manner. EST sequencing also became a valuable
component of de novo sequencing projects, providing a layer of gene expression
information and seeding annotation and gene finding efforts.

Microarray technology, developed in the 1990s, measures the hybridization of
labeled cDNA to an array of DNAprobes that correspond to the sequences of known
genes (or ESTs). The microarray method allows for the discovery, in a genome-wide
fashion, of gene expression changes (as reflected in changes of mRNA levels) result-
ing from any biological treatment or condition.

273

 This is a free sample of content from Next-Generation DNA Sequencing Informatics, 2nd edition. 
Click here for more information on how to buy the book.

© 2015 by Cold Spring Harbor Laboratory Press. All rights reserved.

http://cshlpress.com/default.tpl?action=full&src=pdf&--eqskudatarq=1041


RNA sequencing with NGS technology (RNA-seq) can be used for a number of
different scientific applications. The NGS reads are mapped to a reference genome,
then the number of reads mapping within a feature of interest (such as a gene or
exon), is a measure of expression. Direct sequencing of mRNA provides a measure-
ment of gene expression for the entire transcriptome that is more accurate and has a
greater dynamic range than microarray-based technologies (Marioni et al. 2008).
Just as in microarray experiments, the most common application of RNA-seq is to
identify genes that change expression between experimental conditions. RNA-seq
can also be used to detect mutations in transcribed portions of the genome for the
native germline cells of an individual or for somaticmutations in tumor cells. RNA-
seq is also an excellent platform to measure alternative splicing events that produce
different transcripts (and ultimately different proteins) from a single gene. Alterna-
tive transcript isoforms can be detected with great accuracy by using RNA-seq reads
mapping at splice junctions, specifying both known as well as novel isoforms. With
appropriate sample preparation methods, RNA-seq can also be used to interrogate a
wide variety of non-protein-coding RNAs.

Protocols for sequencing of RNA have been developed by all of the major NGS
vendors. Ribosomal RNA (rRNA) and transfer RNA (tRNA) are very abundant in
the total RNA extracted from both prokaryotic and eukaryotic cells (∼75% of RNA
molecules). Sequencingof abundantnon-protein-codingRNAreducesyield andsen-
sitivity of RNA-seqmethods formRNA and increases cost.Most protocols for RNA-
seq in eukaryotic cells use poly(T) oligonucleotides to isolate mRNA with poly(A)
tails, or use poly(T) primers in combinationwith random short oligomers for reverse
transcription.After poly(A) enrichment, andcDNAsynthesis,mostprotocols shatter
cDNAmolecules into small fragments (from100 to 300 bp) that are then ligatedwith
oligomers specific for the sequencing system. Some protocols have also been devel-
oped to sequence small non-protein-coding RNA molecules such as micro-RNA
(miRNA), small interferingRNA(siRNA), small nuclearRNA(snRNA), smallnucle-
olar RNA (snoRNA), Piwi-interacting RNA (piRNA), and others.

Another method of removing rRNA, tRNA, and other highly abundant RNAs
before sequencing is called duplex-specific nuclease (DSN) normalization. This
method uses a nuclease (Kamchatka crab hepatopancrease) that specifically degrades
double-stranded DNA, while leaving single-stranded DNAmolecules intact (Zhuli-
dov et al. 2004). This method takes advantage of reassociation kinetics. First, total
RNA is reverse transcribed to double-stranded cDNA. Then the cDNA is denatured
at high temperature. Under selective annealing conditions, the most abundant
cDNAmolecules (cDNA clones of rRNA, tRNA, mtRNA, and the most highly tran-
scribedmessages) formdouble strands and are degraded,whereas less abundantmol-
ecules remain single stranded and are preserved. Illumina has presented data using
DSN normalization for RNA-seq (http://www.illumina.com/documents/seminars/
presentations/2010-06_sq_03_lakdawalla_transcriptome_sequencing.pdf ) that
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indicates very good removal of rRNA, high retention of small noncoding RNAs, and
no 30 bias compared with poly(A) purification methods. Relatively few RNA-seq
experiments have been published using the DSN method, so it is not clear what
bias it creates in gene expression or differential expression values.

Despite purification methods (poly(A) selection or DSN normalization), RNA-
seq data may still contain substantial amounts of rRNA, tRNA, and also mitochon-
drial RNA. These can be filtered out in the bioinformatics pipeline by simply using a
“contaminant” file of rRNA, tRNA, and mtDNA sequences for the target species to
prefilter all sequence reads (by alignment with a short read aligner such as BWA or
Bowtie) before mapping the remaining reads to the genome and/or splice junction
database.

DEPTH OF COVERAGE AND NUMBER OF REPLICATES

To accurately measure changes in gene expression for a specific gene between two
experimental conditions (differential expression), the number of mRNA reads
sequenced from the transcript of that gene must be above the threshold of detection
in each sample, or at least in samples from conditions inwhich that gene is expressed.
In addition, given the biological and technical variability of counting mRNA mole-
cules, the absolute counts per sample must be large enough to allow for an accurate
variance measurement across several replicate samples for each experimental condi-
tion. As the total amount of sequence reads per sample increases, expression levels
for each gene can be estimated more accurately and statistical power to detect differ-
ential expression (DE) increases. Somewhat counterintuitively, Tarazona et al.
(2011) suggest that as the number of reads per sample increases, the number of false
positives for DE calls increases for many statistical methods.

Although the goal of most RNA-seq experiments is to accurately profile the
expression levels of all genes, different cell types express genes at dramatically dif-
ferent levels, creating unique transcriptome profiles. For any given cell type, some
genes may be expressed at very high levels, perhaps as much as 5% or 10% of the
total mRNA, whereas some genes are not expressed at detectable levels (i.e., less
than one mRNA molecule per cell). Therefore, it is probably not possible to
sequence enough reads per sample to accurately assess DE for every single gene
in the genome. Blencowe et al. (2009) suggested that 700 million reads per sample
were required to obtain accurate quantitation for 95% of all expressed transcripts
in mammalian cells. These very low-expressed transcripts may not be good targets
for DE analysis because the variance of read counts may be quite high across
replicates.

Given that there is some limit on the sensitivity of RNA-seq to detect transcripts
and accurately assess differential gene expression, the relevant question for most
investigators becomes: What is the practical limit of sensitivity in which reliable
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expression information can be obtained for the majority of transcriptionally active
genes? In fact, a steep curve of diminishing returns has been observed in a number
of studies that have explored the depth of coverage for RNA-seq. In Figure 1, data
from three studies all show a consistent pattern of decreased discovery of new genes
(covered by at least five reads) at increasing depth of coverage. Marioni et al. (2008)
discover 232 new genes per each additional million reads at a depth of 22million, the
MAQC study finds 70 new genes per million at a depth of 45 million, and Griffith
et al. (2010) find 19 new genes per million at a depth of 200 million (and by subsam-
pling theGriffith data, the discovery rate at a depth of 20million is 210 and at a depth
of 45million is 75). Data fromToung et al. (2011) (Fig. 2) is also consistent, with very
few new transcripts discovered as sequencing depth increases from 100million reads
to nearly one billion reads.

Of course, the actual number of expressed genes and their relative abundance
within the cell varies depending on organism, tissue type, cell type, and developmen-
tal status. Low abundance transcripts may be biologically important regulators, but
deep coverage sequencing of in vivo samples may also capture transcripts from non-
target cell types mixed into the sample. Very deep sequencing studies also observe
rare noncoding transcripts frommuch of the genome. In fact, the percentage of non-
coding transcripts increases among newly detected genes at deeper levels of coverage,
whereas discovery of new protein-coding genes reaches near saturation at much
lower coverage levels (Tarazona et al. 2011).

Another important consideration for the design of an RNA-seq experiment is
the number of replicates for each biological condition. Researchers generally wish
to know the optimal number of replicates required to achieve a desired level of stat-
istical power to find DE. Li et al. (2013) developed a model to calculate statistical
power and estimate sample size for RNA-seq experiments based on a negative bino-
mial model of variation in counts per gene in each sample and an exact test for DE.
They show sample size requirements in a simulation experiment and by reanalysis of
published data for two experiments with human tissues. In the simulation, in which
variance among replicates was low (ϕ∗ = 0.1) and log2-fold change was 2.0 or more,
only three to six replicates are required to find all of the DE genes with coverage
greater than five reads and a false discovery rate (FDR) less than 5%. Increasing
the variance to ϕ∗ = 0.5 triples the number of required replicates, and lowering
the log2-fold change to 1.0 (a twofold change in expression) increases the required
number of replicates to 20. In real biological data the variance often exceeds 0.6
and is overdispersed compared to the expectation of a Poisson model (Fang et al.
2012). For example, in a data set extracted from Blekhman et al. (2010), RNA-seq
of liver samples are compared between three human males and three females. Aver-
age read coverage of 13,267 detected genes is 1.6 and the dispersion is ϕ∗ = 0.6513. In
this data set, to discover 80% of twofold DE genes with FDR of 10% would require a
sample size of 79 per condition. (See Table 1.)
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The general conclusion from these sample size calculations is that themajority of
published RNA-seq experiments have very low power—perhaps only 50%of trueDE
genes can be discovered with adequate control of false discovery; and the discovery of
these DE genes is biased toward genes that are highly expressed and show large fold
change between conditions. Combining considerations of sequencing depth and

100%

80%

60%

40%

P
er

ce
nt

 d
et

ec
te

d

20%

0 100 200 300

Number of reads (in millions)

400

Class

Junctions
Transcripts
Genes

500 600 700 800 900

FIGURE 2. 100million reads detect 81% of genes at FPKM ≥ 0.05. Each additional 100million reads detect
∼3% more genes. (Reprinted, with permission, from Toung et al. 2011, ©Cold Spring Harbor Laboratory
Press.)

TABLE 1. Sample size simulation for an RNA-seq experiment with 10,000 detected genes with log-fold
change [log2( p*)] ranging from 0.5 to 2.5 and dispersion (φ∗) at 0.1 and 0.5

μ∗0 = 1 μ∗0 = 5
FDR FDR

log2(p
∗) φ∗ 1% 5% 10% 1% 5% 10%

0.5 0.1 365 (81) 305 (84) 278 (88) 104 (81) 87 (84) 79 (88)

0.5 518 (81) 433 (84) 394 (88) 257 (81) 215 (84) 196 (89)

1.0 0.1 79 (81) 67 (84) 61 (87) 24 (82) 20 (84) 19 (91)

0.5 119 (81) 99 (83) 91 (88) 63 (82) 53 (85) 48 (89)

1.5 0.1 31 (82) 26 (83) 24 (86) 10 (83) 9 (90) 8 (91)

0.5 49 (81) 41 (83) 38 (88) 28 (83) 23 (84) 21 (86)

2.0 0.1 16 (85) 13 (84) 12 (86) 6 (90) 5 (92) 4 (86)

0.5 26 (82) 22 (84) 20 (86) 16 (84) 13 (85) 12 (89)

2.5 0.1 8 (85) 7 (89) 6 (87) 3 (78) 3 (81) 3 (98)

0.5 14 (83) 12 (87) 11 (84) 10 (82) 9 (90) 8 (91)

Reproduced, with permission, from Li et al. 2013.
The sample size is shown for minimum normalized read counts per gene (μ0*) of 1 and 5 and FDR rates of
1%, 5%, and 10%. Numbers in parentheses after sample size are the number of differential genes detected
by the exact text using edgeR (in which the true number of DE genes is 80).
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sample size leads to a general recommendation that has been repeated by a number of
investigators. More biologically relevant DE genes will be discovered by sequencing
more samples at lower depth of coverage rather than fewer samples at greater depth.
Hart et al. (2013) surveyed 127 RNA-seq experiments and found that a sequenc-
ing depth of 10 million reads will ensure that ∼90% of all annotated genes will be
covered by at least 10 reads, and that no greater detection of DE at twofold expression
change can be achieved with greater depth of sequencing. The larger constraint on
detecting DE for a gene is the variance of the expression measurements across rep-
licates rather than the depth of coverage (see Fig. 3). Rapaport et al. (2013) summa-
rize the extensive RNA-seq DE benchmarking efforts of the MAQC/SEQC group
with the simple statement: “Our results demonstrate that increasing the number
of replicate samples significantly improves detection power over increased sequenc-
ing depth.”

The abundance of transcripts fromdifferent genes observed inRNA-seq data has
been shown to accurately represent the gene expression profile of various cell sam-
ples when validated by other technologies such as RNAmicroarray and quantitative
polymerase chain reaction (qPCR) (Maroni et al. 2008). As the total yield of NGS
machines has increased, the sensitivity of RNA-seq has greatly exceededmicroarray-
based methods of measuring transcripts from genes expressed at low levels. Because
RNA-seq does not rely on existing sequence data for the creation of probes, it can
measure the expression of unannotated genes and portions of known genes not pre-
viously observed in transcripts such as 50 and 30 extensions as well as a variety of
alternatively spliced isoforms that include regions annotated as introns. Pickrell
et al. (2010) found that ∼15% of mapped human RNA-seq reads were located out-
side annotated exons. Figure 4 illustrates the RNA-seq mapping around the ADM
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FIGURE 3. The coefficient of variation has a
much larger effect than the depth of sequenc-
ing on the required sample size to detect a two-
fold difference in expression of a single gene
with 80% power at α = 0.01. (Reprinted, with
permission, fromHart et al. 2013. The publisher
for this copyrighted material is Mary Ann Lie-
bert, Inc. Publishing.)
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gene, with large numbers of reads mapping to annotated exons, but some reads also
map to introns and 50 regions.

RNA-seq experiments may have goals other than quantifying gene expression
and detecting expression changes across experimental conditions. Interrogation of
alternative splicing requires adequate coverage of all potential splice junction sites
on a transcript (an average coverage of five reads per base across every base in the
entire length of the transcript), and discovery of low abundance transcript isoforms
may require much deeper coverage. Discovery of sequence variants (single-
nucleotide polymorphism [SNPs]) in RNA requires an average depth of coverage
greater than 10× for every base in each expressed gene. The actual number of reads
required depends of course on the size of the transcriptome for the target species.

PREALIGNMENT QC OF RNA-seq DATA

RNA-seq data is evaluated on the sequencer in exactly the same way as DNA
sequence data. For Illumina sequencers, information is provided during the
sequencing run on flowcell fluorescent intensity, cluster density, phasing/prephas-
ing, quality score distribution (after cycle 25), error rate (based on alignment of
spiked in Phix sequences after 52 cycles of sequencing are completed), percentage
of clusters passing the signal/noise filter, percentage of successful detection of multi-
plex bar codes. Once the sequencing run is complete, FastQC or similar tools can be
used on the FASTQ files to evaluate overall quality scores and other parameters. Per
base quality score graphs can identify possible low-quality regions at 50 or 30 ends of
reads or problematic drops in quality within the reads (see Chapter 3). Quality met-
rics of specific concern for RNA-seq include the amount of ribosomal RNA (rRNA)
present in each sample (which may be detected as overrepresented sequences), and
the overall amount of sequence duplication. High sequence duplicationmay indicate
excess amounts of rRNA, PCR artifacts during sample preparation, or it may simply

FIGURE 4. RNA-seq reads mapped to the human genome in the region of the ADM gene. (Image courtesy
of P.R. Smith.)
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