This is a free sample of content from Microbial Evolution. Click here for more information on how to buy the book.

Index

A

Acetyl-CoA pathway, carbon dioxide fixation, 12–13, 18 Adaptation *Campylobacter*, 160 horizontal gene transfer role, 47–48 α-Glucosidase, 178–179 Anaerobes early evolution, 15–16 phylogenetic trees, 16–18 ANI. *See* Average nucleotide identity *Aquifex aeolicus*, genome sequencing, 3 Average nucleotide identity (ANI), 140

B

Bacillus subtilis, genome sequencing, 3 β-Galactosidase, natural selection studies, 87–88 Borrelia burgdorferi, genome sequencing, 3 BRATNextGen, 125 Burkholderia, genome structure, 191

С

Cairns-Foster experiment, 98-102, 110-112 Campylobacter coli adaptation, 160 evolution timescale, 164-165 horizontal gene transfer genetic diversification, 159-160, 165 interspecies, 165-166 pathophysiology, 157-158 population structure ecological basis, 162-164 overview, 160-162 prospects for study, 166-167 recombination and phenotype emergence, 165 sequence-based molecular typing, 158-159 Campylobacter jejuni adaptation, 160 evolution timescale, 164-165 horizontal gene transfer genetic diversification, 159-160, 165 interspecies, 165-166 pathophysiology, 157-158 population structure ecological basis, 162-164 overview, 160-162

prospects for study, 166–167 recombination phenotype emergence, 165 rates, 126 sequence-based molecular typing, 158–159 Carbon dioxide fixation, 12–13, 18–19 formate from abiotic reduction, 18 *Carsonella ruddii*, genome sequencing, 5 *Caulobacter crescentus*, 193–194 CLONALFRAME, 125 Conjugation. *See* Horizontal gene transfer *Cyanostylon*, 30

D

DDC model. See Duplication-degenerationcomplementation model De novo gene evolution emergence of genes evidence, 183–184 mechanisms, 182–183 orphan genes, 181–182 overview, 181 protein-folding problem, 184–185 DinB fidelity, 103 horizontal gene transfer, 106 Duplication. See Gene duplication Duplication-degeneration-complementation (DDC) model, 174

Ε

EAC model. *See* Escape from adaptive conflict model *Entophysalis*, 30 Escape from adaptive conflict (EAC) model, 178 *Escherichia coli* genome organization, 192–193 genome sequencing, 3 Eukaryotes origins, 13–15 prokaryote complexity comparison, 117–118

F

Fossils. See Microfossils FtsK, 193, 195 This is a free sample of content from Microbial Evolution. Click here for more information on how to buy the book.

Index

G

Gene duplication duplication-divergence concept overview, 171-172 innovation-amplification-divergence model amplification, 177 divergence, 177-178 evidence and predictions, 178-179 experimental testing, 179-181 innovation, 175-177 overview, 175-176 lac operon, 103-104 pre-existing function modification birth and fate of duplications, 172-173 fitness costs of duplications, 173 maintenance of duplications, 174 stability of duplications, 173-174 Gene repertoire evolution, 48-49 variations in light of genome organization, 198-199 Genome-based taxonomy applications, 62-63 genomic data, 56, 58-59 overview, 55-57 phylogeny reconciliation with taxonomy, 59-61 transition from 16S rRNA, 61-62 Genome size, gene count versus genome size, 1-5 Genome structure chromosome replication, recombination, and segregation, 194-195 gene repertoire variations in light of genome organization, 198-199 operon gene organization, 195-198 organization elements, 192-194 prospects for study of organization coevolution, 199 - 200variability in prokaryotes, 190-192 Gloeocapsa, 30 Gloeothece, 30 GOE. See Great oxidation event Great oxidation event (GOE), 15-16 GUBBINS, 125 Gypsum, sediments, 28

Η

Haemophilus influenzae, genome sequencing, 5 Helicobacter pylori genome sequencing, 3 relative recombination rate, 123, 127–128 HFIR. See Homology-facilitated illegitimate recombination HGT. See Horizontal gene transfer HisA, 179–181 Histidinol phosphatase, 177 Homologous recombination, 120–122 Homology-facilitated illegitimate recombination (HFIR), 122 Horizontal gene transfer (HGT) adaptation role, 47–48 advantages, 45 *Campylobacter* genetic diversification, 159–160, 165 interspecies, 165–166 evolutionary consequences, 44–45 lateral gene transfer overview, 8 mechanisms, 43–44 speciation role, 136–137, 154 techniques for study, 45–47 tree of life studies, 49–51

I

IAD model. *See* Innovation–amplification–divergence model Innovation–amplification–divergence (IAD) model amplification, 177 divergence, 177–178 evidence and predictions, 178–179 experimental testing, 179–181 innovation, 175–177 overview, 175–176 Iron–sulfur proteins, anaerobes, 7 Islands of speciation, 150–151

L

Lactose metabolism, 85-86 natural selection studies bottom-up analysis chemostat studies, 85-86 enzyme activities, 86-88 fitness, 86-88 flux, 96 frequency-dependent selection, 89 resource-based competition theory, 88 top-down studies specialist selection, 90-91 specialization evolution, 89-90 operon duplication and amplification, 103-104 overview, 85 Last universal common ancestor (LUCA), 18 - 19, 49Lateral gene transfer. See Horizontal gene transfer LD. See Linkage disequilibrium Leptospirillum, nascent cluster genomics, 148 Leptothrix, 33 Linkage disequilibrium (LD), 122-123 LUCA. See Last universal common ancestor Lyngbya, 30

Index

Μ

MatP, 193 Metabolism carbon metabolism evolution, 12-13 microbial evolution, 8-9 Methicillin-resistant Staphylococcus aureus (MRSA), recombination rates, 125-126 Microcoleus, 30 Microfossils Archaean paleobiology, 34-36 biological signatures of bacteria and Archaea, 25 - 29cyanobacteria, 26, 30 iron formations, 32-33 Proterozoic ocean microbial ecosystems, 29-34 Miller-Urey experiment, 12 Mismatch repair (MMR), 73 MLST. See Multilocus sequence typing MMR. See Mismatch repair MRSA. See Methicillin-resistant Staphylococcus aureus Multilocus sequence typing (MLST), Campylobacter, 159-164 Mutation biases adenine-thymine bias, 72-74 mutation rate variation along chromosome, 74 - 75constitutive mutators, 75-77 mutation accumulation, 70-71 natural selection effect elimination, 70-71 natural selection mimicry of mutagenesis amplification remodeling under selection, 107-108, 111 Cairns-Foster experiment, 98-102, 110-112 growth and mutagenesis, 108-109 growth before mutation under selection, 107 models amplification under selection, 105 data conflicts in model selection, 105-108 novel model, 109-110 overview, 104-105 stress-induced mutagenesis, 105 natural selection without reproduction, 112 overview, 97-99 revertants initiation timing, 105-106 yield, factors affecting DinB fidelity, 103 F plasmid transfer replication, 102-103 lac operon duplication and amplification, 103 - 104recombination proficiency, 103 uneven distribution of mutagenesis directed mutagenesis, 101, 111-112 hypermutable states, 101-102

selective improvement of small-effect mutants, 102 rate absolute/overall rates, 71–72 estimation, 69–70 stress-induced mutagenesis, 75–77 substitution comparison, 67–69 *Mycobacterium genitalium*, genome sequencing, 4–5 *Mycobacterium leprae*, genome sequencing, 3 *Mycobacterium tuberculosis* genome sequencing, 3 relative recombination rate, 123

Ν

Natural selection definition, 81 effect elimination in mutation studies, 70-71 experimental evolution microbial experimental evolution, 84-85 overview, 83-84 lactose system studies bottom-up analysis chemostat studies, 85-86 enzyme activities, 86-88 fitness, 86-88 flux, 96 frequency-dependent selection, 89 lactose operon, 85 lactose pathway, 85-86 resource-based competition theory, 88 top-down studies specialist selection, 90-91 specialization evolution, 89-90 modeling of complexity, 81-83 mutants under selection. See Mutation phenotype versus fitness, 92-94 selective environment changing, 91-92 Neisseria, recombination rates, 126

0

Operational taxonomic unit (OTU), 140 Operon gene organization, 195–198 *lac* operon duplication and amplification, 103–104 overview, 85 Orphan genes, *de novo* gene evolution, 181–182 *Oscillatoria*, 30 OTU. *See* Operational taxonomic unit

Р

Pasteurellaceae, recombination rates, 126 Phenotype. *See* Natural selection This is a free sample of content from Microbial Evolution. Click here for more information on how to buy the book.

Index

Phormidium, 30
Phosphoglyceromutase 2, 177
Phosphoglycolate phosphatase, 177
Phosphoserine phosphatase (SerB), 177
Prochlorococcus, 31, 148
Protein-folding problem, *de novo* gene evolution, 184–185
Public goods hypothesis, 129–130
Pyrite sediments, 28 synthesis, 12

R

RecA-mediated recombination, 120-122 Recombination Campylobacter and phenotype emergence, 165 chromosome replication, recombination, and segregation, 194-195 evolutionary implications, 128-129 gene niches, 129-130 homology-facilitated illegitimate recombination, 122 nonbacteria, 130-131 overview in bacteria, 118-120 proficiency, 103 rate variation, 125-128 recA-mediated recombination, 120-122 speciation modeling under different recombination/ selection balances, 140 selection and recombination interplay remodeling, 141-144 species variation in amount, 122-125 RNA world, eukaryote origins, 13-14

S

SAS. See Sialic acid synthase SEM. See Stable ecotype model SerB. See Phosphoserine phosphatase Sialic acid synthase (SAS), 178 SIM. See Stress-induced mutagenesis SlmA, 193 Speciation, microbes ecological units, 139-141 horizontal gene transfer, 136-137, 154 islands of speciation, 150-151 metagenomics, 136 modeling under different recombination/selection balances, 140 nascent cluster genomics, 144-148 natural units of diversity, challenges in identification, 141 reverse ecology population genomic studies, 138-139 prospects for study, 152-154 selection and recombination interplay remodeling, 141-144 stable ecotype model, 142-143 stages, 148-150 variation within cohesive population, 150-152 Spirulina, 30 Stable ecotype model (SEM), 142-143 Stress-induced mutagenesis (SIM), 75-77, 101-102, 105 Stromatolites, 28-29, 31, 33 Sulfolobus, nascent cluster genomics, 144-147

Т

Thermophiles, origins, 11–12 Transduction. *See* Horizontal gene transfer Transformation. *See* Horizontal gene transfer *Tremblaya princeps*, genome sequencing, 5

V

Vibrio cyclitrophicus, nascent cluster genomics, 144–147